Irrigated Agriculture on Saline Soils: A Perspective

Author:

Tedeschi AnnaORCID

Abstract

Approximately 6.5% of the world’s arable and marginal soils are either saline or sodic. The situation will worsen due to climate change. Regardless of the cause that generated the salinity, i.e., whether primary or secondary, the effect of soil salinization on plant growth and on living organisms will be severe. To mitigate such impacts, several studies have been carried out over the years with the aim of providing technical or management solutions to deal with the multiple consequences of soil salinity. A review by Cuevas et al. proposes a new approach looking for solutions through soil-improving cropping systems (SICSs). The SICSs have to prevent, mitigate or remediate the negative impacts of soil salinization. The efforts of Cuevas et al. were to organize the analyses by focusing on SICSs that would: (1) prevent or halt secondary salinization; (2) cope with salinization; (3) reverse salinization. The study is concluded by an effort to assess the impacts of each SICS and of the combined SICSs application in terms of agronomic, economic, and environmental aspects. Both economic constraints and the collective willingness of stakeholders to innovate are taken into in the evaluation of feasibility. It is important to put into practice and/or identify a number of sustainable actions, at low environmental input, to improve crop tolerance to water deficit and high salinity as well as to preserve biodiversity and mitigate the impact of climate changes. At the same time, these actions would ensure crop productivity in the area, thus guaranteeing environment and social benefits to the local population, and thus weakening the motivation to abandon the land. The aim of this editorial is to propose a broader perspective on the review by Cuevas et al. “A Review of Soil-Improving Cropping Systems for Soil Salinization”. In the review, the authors go through several soil-improving cropping systems (SICSs) by considering them separately or in combination with the aim to provide guidelines towards resolving, counteracting or mitigating soil salinity. I tried to highlight the strengths of the study by Cuevas et al., while suggesting related topics that may deserve further attention by the community.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3