Water, Salt, and Ion Transport and Its Response to Water-Saving Irrigation in the Hetao Irrigation District Based on the SWAT-Salt Model

Author:

Ao Chang1,Jiang Donglin2,Bailey Ryan T.3,Dong Jianhua1,Zeng Wenzhi14ORCID,Huang Jiesheng1

Affiliation:

1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China

2. Power China ZhongNan Engineering Corporation Limited, Changsha 410027, China

3. Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA

4. College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China

Abstract

Soil salinization is one of the main hazards affecting the sustainable development of agriculture in the Hetao Irrigation District (HID) of Inner Mongolia. To grasp the water and salt transport patterns and spatial–temporal distribution characteristics of the HID at the regional scale, the improved Soil and Water Assessment Tool with a salinity module (SWAT-Salt) model was used to establish the distributed water and salt transport model for the watershed in this study. The results demonstrated that the modified model could more accurately represent the process of water and salt changes in the HID. The coefficient of determination (R2) in the simulation of streamflow and discharge salt loading was 0.83 and 0.86, respectively, and the Nash–Sutcliffe efficiency (NSE) was 0.80 and 0.74, respectively. Based on this, different hydrological processes (surface runoff, lateral flow, groundwater, soil seepage) as well as spatial–temporal distribution characteristics of water salinity in groundwater and soil were analyzed in the HID. Differences in groundwater and soil salinity in different land uses and soil types were also compared. Of these, surface runoff and lateral flow salt discharge loading are concentrated in the southwestern portion of the basin, while groundwater salt discharge loading is concentrated in the eastern as well as southwestern portions of the basin. The salt discharge loading from groundwater accounts for about 98.7% of the total salt discharge loading from all hydrological pathways and is the major contributing part of salt discharge from the irrigation area. Soil salinity increases gradually from west to east. Groundwater salinity (2946 mg/L) and soil water electrical conductivity (0.309 dS/m) were minimized in the cropland. Meanwhile, rational allocation of irrigation water can appropriately increase the amount of salt discharge loading. In conclusion, the model could provide a reference for the investigation of soil salinization and water–salt management measures in irrigation areas.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3