Subsurface Drip Irrigation with Emitters Placed at Suitable Depth Can Mitigate N2O Emissions and Enhance Chinese Cabbage Yield under Greenhouse Cultivation

Author:

Hamad Amar Ali Adam,Wei Qi,Wan Lijun,Xu JunzengORCID,Hamoud Yousef AlhajORCID,Li Yawei,Shaghaleh Hiba

Abstract

Agricultural practices, such as applying excessive water and nitrogen fertilizer to increase the crop yield, can be a significant source of greenhouse gas emissions (GHGs). Therefore, techniques and proper management are needed to mitigate these emissions without yield reduction. The experiment used three subsurface drip irrigation (SDI) depths with emitters buried at 0.05, 0.10, and 0.15 m below the soil surface, along with two nitrogen fertilizer (Urea, N > 46.2%) application levels of 300 kg N ha−1 (N300) and 240 kg N ha−1 (N240) to investigate the effect of vertical and horizontal water and fertilizer distribution on N2O emissions under different SDI techniques in greenhouse conditions. The results indicated that soil N2O emissions from SDI10 and SDI15 decreased by 7.06% and 10.69%, respectively, compared to SDI5. N2O, WFPS, NH4+-N, and NO3−-N were significantly reduced with the increased radial distance from the emitter. N2O was positively correlated to WFPS and NH4+-N while negatively correlated to NO3−-N. The NH4+-N and NO3−-N concentrations decreased with depth and increased with fertilization events. Furthermore, N2O, WFPS, NH4+-N, and NO3−-N were increased under N300 compared to N240 (p > 0.05). The findings demonstrated that the Chinese cabbage yield was significantly enhanced under SDI15 compared to SDI5 and SDI10. Furthermore, N300 can increase the cabbage yield more than N240 among all treatments.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3