Optimization of a Lower Irrigation Limit for Lettuce Based on Comprehensive Evaluation: A Field Experiment

Author:

Hou Maomao1,Zhang Houdong1,Shaghaleh Hiba2ORCID,Chen Jingnan2,Zhong Fenglin1,Alhaj Hamoud Yousef2ORCID,Zhu Lin3

Affiliation:

1. College of Horticulture, Fujian Agriculture and Forest University, Fuzhou 350000, China

2. College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China

3. Nanjing Institute of Environmental Sciences, Nanjing 210000, China

Abstract

When optimizing irrigation methods, much consideration is given to crop growth indicators while less attention has been paid to soil’s gaseous carbon (C) and nitrogen (N) emission indicators. Therefore, adopting an irrigation practice that can reduce emissions while maintaining crop yield and quality is of great interest. Thus, open-field experiments were conducted from September 2020 to January 2022 using a single-factor randomized block design with three replications. The lettuce plants (“Feiqiao Lettuce No.1”) were grown using four different irrigation methods established by setting the lower limit of drip irrigation to 75%, 65%, and 55% of soil water content at field capacity corresponding to DR1, DR2, and DR3, respectively. Furrow irrigation (FI) was used as a control. Crop growth indicators and soil gas emissions were observed. Results showed that the mean lettuce yield under DR1 (64,500 kg/ha) was the highest, and it was lower under DR3 and FI. The lettuces under DR3 showed greater concentrations of crude fiber, vitamin C, and soluble sugar, and a greater nitrate concentration. Compared with FI, the DR treatments were more conducive to improving the comprehensive quality of lettuce, including the measured appearance and nutritional quality. Among all the irrigation methods, FI had the maximum cracking rate of lettuce, reaching 25.3%, 24.6%, and 22.7%, respectively, for the three continuous seasons. The stem cracking rates under DR2 were the lowest—only 10.1%, 14.4%, and 8.2%, respectively, which were decreased to nearly half compared with FI. The entropy model detected that the weight coefficient evaluation value of DR2 was the greatest, reaching 0.93, indicating that the DR2 method has the optimal benefits under comprehensive consideration of water saving, yield increase, quality improvement, and emission reduction.

Funder

The Seed Industry Innovation and Industrialization Project in Fujian Province

Rural Revitalization Vegetable Industry Service Project of Fujian Agriculture and Forestry University

Fujian Modern Agricultural Vegetable Industry System Construction Project

facilities suitable for mechanized harvesting green leafy vegetables introduction, screening, and demonstration promotion

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3