Transcriptome Analysis of Nitrogen-Deficiency-Responsive Genes in Two Potato Cultivars

Author:

Wei Qiaorong123,Yin Yanbin124,Deng Bin1,Song Xuewei12,Gong Zhenping1,Shi Ying12

Affiliation:

1. College of Agriculture, Northeast Agricultural University, Harbin 150038, China

2. Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Harbin 150038, China

3. National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150038, China

4. Rice Research Institute, Shenyang Agricultural University, Shenyang 110065, China

Abstract

The potato is the third largest food crop, and nitrogen fertilizer is important for increasing potato yields; however, the shallow root system of potatoes causes the nitrogen fertilizer utilization rate to be low, which results in waste and environmental pollution, meaning that high nitrogen efficiency breeding is highly significant for potatoes. In the high nitrogen efficiency breeding of potatoes, genes with a nitrogen-deficient response should first be identified, and RNA-seq is an efficient method for identifying nitrogen-deficiency-response genes. In this study, two potato cultivars, Dongnong 322 (DN322) and Dongnong 314 (DN314), were utilized, and two nitrogen fertilizer application rates (N0 and N1) were set for both cultivars. Through the determination of physiological indicators, we identified that DN314 is more sensitive to nitrogen fertilizer, while DN322 is relatively insensitive to nitrogen fertilizer. Samples were taken at the seedling and tuber formation stage. At the seedling stage, DN322 and DN314 had 573 and 150 differentially expressed genes (DEGs), while at the tuber formation stage, they had 59 and 1905 DEGs, respectively. A total of three genes related to a low-nitrogen response were obtained via the combined analysis of differentially expressed genes (DEGs) and weighted correlation network analysis (WGCNA), of which two genes were obtained at the tuber formation stage and one gene in the seedling stage, providing theoretical guidance for the high nitrogen efficiency breeding of potatoes.

Funder

earmarked fund for the China Agriculture Research System

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3