Transcriptome analysis reveals multiple effects of nitrogen accumulation and metabolism in the roots, shoots, and leaves of potato (Solanum tuberosum L.)

Author:

Guo Heng,Pu Xiuqin,Jia Hao,Zhou Yun,Ye Guangji,Yang Yongzhi,Na Tiancang,Wang Jian

Abstract

Abstract Background Nitrogen (N) is a major element and fundamental constituent of grain yield. N fertilizer plays an essential role in the roots, shoots, and leaves of crop plants. Here, we obtained two N-sensitive potato cultivars. Results The plants were cultivated in the pots using N-deficient and N-sufficient conditions. Crop height, leaf chlorophyll content, dry matter, and N-accumulation significantly decreased under N-deficient conditions. Furthermore, we performed a comprehensive analysis of the phenotype and transcriptome, GO terms, and KEGG pathways. We used WGCNA of co-expressed genes, and 116 differentially expressed hub genes involved in photosynthesis, nitrogen metabolism, and secondary metabolites to generate 23 modules. Among those modules, six NRT gene families, four pigment genes, two auxin-related genes, and two energy-related genes were selected for qRT-PCR validation. Conclusions Overall, our study demonstrates the co-expressed genes and potential pathways associated with N transport and accumulation in potato cultivars’ roots, shoots, and leaves under N-deficient conditions. Therefore, this study provides new ideas to conduct further research on improving nitrogen use efficiency in potatoes.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3