The Effect of Rotational Cropping of Industrial Hemp (Cannabis sativa L.) on Rhizosphere Soil Microbial Communities

Author:

Tang LiliORCID,Fan Chao,Yuan Hongmei,Wu Guangwen,Sun Jing,Zhang Shuquan

Abstract

Crop rotation affects soil properties and soil microbial diversity and structure. Currently, it is not well understood how soil microbial diversity changes following different crop rotation systems of industrial hemp, an ancient and economically important crop. Therefore, these changes were analyzed in this study. Our results showed that different rotation systems significantly affected the wilt disease incidence, plant height, yield, soil physicochemical properties and soil microbial communities in the greenhouse. The rotation systems used in this study significantly reduced the plant mortality and increased the yield compared with a monoculture system. The levels of alkaline hydrolysis and available phosphorus in the soil decreased significantly compared with a monoculture cropping system. Using MiSeq high-throughput sequencing, we showed that the soil diversity and number of bacteria and fungi were significantly higher for rotation systems and controls compared to the monoculture system. The relative abundance of pathogens increased with a monoculture system. Redundancy analysis suggests that soil properties may also affect the soil microbial composition. Taken together, different rotation systems used in this study significantly decreased the disease incidence, increased plant yields and increased soil microbial diversity compared with monoculture for industrial hemp. We believe that applying these rotation systems is an efficient and eco-friendly approach to control soil borne pathogenic diseases and increase floral yields.

Funder

Heilongjiang Provincial Scientific Research Institute Scientific Research Business Expense Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3