Abstract
Crop rotation affects soil properties and soil microbial diversity and structure. Currently, it is not well understood how soil microbial diversity changes following different crop rotation systems of industrial hemp, an ancient and economically important crop. Therefore, these changes were analyzed in this study. Our results showed that different rotation systems significantly affected the wilt disease incidence, plant height, yield, soil physicochemical properties and soil microbial communities in the greenhouse. The rotation systems used in this study significantly reduced the plant mortality and increased the yield compared with a monoculture system. The levels of alkaline hydrolysis and available phosphorus in the soil decreased significantly compared with a monoculture cropping system. Using MiSeq high-throughput sequencing, we showed that the soil diversity and number of bacteria and fungi were significantly higher for rotation systems and controls compared to the monoculture system. The relative abundance of pathogens increased with a monoculture system. Redundancy analysis suggests that soil properties may also affect the soil microbial composition. Taken together, different rotation systems used in this study significantly decreased the disease incidence, increased plant yields and increased soil microbial diversity compared with monoculture for industrial hemp. We believe that applying these rotation systems is an efficient and eco-friendly approach to control soil borne pathogenic diseases and increase floral yields.
Funder
Heilongjiang Provincial Scientific Research Institute Scientific Research Business Expense Project
Subject
Agronomy and Crop Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献