Effects of Biochar on the Cd Uptake by Rice and the Cd Fractions in Paddy Soil: A 3-Year Field Experiment

Author:

Sun Xiaoxue1,Wang Jiangnan1,Zhang Miao1,Liu Zunqi1,E Yang1,Lan Yu1,He Tianyi1,Meng Jun1

Affiliation:

1. Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China

Abstract

Biochar is a potential amendment for the remediation of Cd-contaminated soils. Although the immobilization effect of biochar on soil Cd has been studied under indoor laboratory conditions, the effect of biochar on rice Cd uptake and soil Cd fractions under field conditions is still poorly understood. Here, the Cd content of the different organs of rice and the Cd fractions in soil were characterized for three years after the application of different amounts of biochar (0, 7.5, 15, 30 t ha−1, and 3 t ha−1 year−1). The Cd content of brown rice, husk, leaf, stem and sheath, and root under biochar treatment could be maximally reduced by up to 26.25%, 20.16%, 20.74%, 33.2%, and 26.89%, respectively. Biochar altered the Cd fractions in soil, including the decrease in exchangeable Cd content and the increase in Fe-Mn oxide bound Cd and organic bound Cd. The concentration factor of Cd uptake by rice was reduced by 32% under biochar application, while biochar had little influence on the transfer factor and distribution factor. The immobilization effect of biochar on soil Cd lasted for at least three years, but the trend of Cd immobilization efficiency over time for different amounts of biochar treatment was different. The Risk Assessment Code (RAC) of Cd in soil with biochar amendment could be reduced to a medium risk level from a high risk level. Redundancy analysis (RDA) revealed that changes in soil pH and Fe-Mn oxide bound Cd content caused by biochar application contributed most to the reduction in the Cd content of rice organs. These findings would enhance our understanding of the immobilization effect of biochar on Cd in paddy soil under field conditions.

Funder

National Natural Science Foundation of China

Science and Technology Project of Liaoning Province

Modern Agro-industry Technology Research System

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3