Biochar-mediated Cd accumulation in rice grains through altering chemical forms, subcellular distribution, and physiological characteristics

Author:

Chen Le,Guo Lin,Xiong Qiangqiang,Liao Ping,Deng Xueyun,Pan Xiaohua,Tan Xueming,Xie Xiaobing,Dai Qigen,Gao Hui,Wei Haiyan,Zeng YongjunORCID,Zhang Hongcheng

Abstract

AbstractBiochar can change the availability and morphology of soil Cd. However, the influence of biochar on Cd chemical form and subcellular fraction in rice is poorly understood, particularly under different irrigation methods. A pot experiment of biochar application combined with two irrigation methods (continuous flooding and intermittent irrigation, CF and II) was conducted. The Cd accumulation, chemical form and subcellular fraction in rice organs and the associated physiological responses were examined. Biochar significantly reduced soil available Cd (30.85–47.26% and 32.35–52.35%) under CF and II but increased the Cd content (30.4–63.88% and 13.03–18.59%) in brown rice. Additionally, the Cd content in shoots/grains under II was higher than that under CF. Biochar elevated the Cd soluble fraction in roots while lowered the cell wall fraction under both irrigation methods, whereas the opposite result was observed in leaves. Biochar increased water-, ethanol-, and NaCl-extractable Cd in roots meanwhile increased ethanol-extractable Cd in leaves under both irrigation methods. Moreover, the total amount of water-, ethanol-, and NaCl-extractable Cd in rice roots was higher under II than under CF. Related hormones and antioxidant enzymes may also be involved in biochar-mediated Cd accumulation in rice grains. Thus, changes in Cd chemical form and subcellular fraction in the root and leaf are the main mechanisms of biochar-induced rice grains Cd accumulation. Graphical Abstract

Funder

National Natural Science Foundation of China

Jiangsu Funding Program for Excellent Postdoctoral Talent

Jiangsu Technical System of Rice Industry

Special Funds of the Rice Industry System of Jiangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3