Using Microgranular-Based Biostimulant in Vegetable Transplant Production to Enhance Growth and Nitrogen Uptake

Author:

Cardarelli MariateresaORCID,Rouphael YoussefORCID,Coppa Eleonora,Hoagland Lori,Colla GiuseppeORCID

Abstract

Vegetable growers need high-quality transplants to ensure the success of their crops. Treating seedlings with protein hydrolysates and beneficial fungus Trichoderma atroviride has the potential to improve the health and quality of vegetable transplants via various biostimulant activities, but the best rates and application methods to achieve these benefits are still unclear. Therefore, the aim of the studies described in this manuscript were to: (i) identify the optimal rate of a microgranular-based biostimulant containing vegetal-derived protein hydrolysate (PH) and the beneficial fungus T. atroviride MUCL45632 on lettuce and tomato transplant production (Experiment 1); and (ii) determine whether combining the T. atroviride inoculant with the PH in microgranular or liquid form would best support the synergistic effects of these products using greenhouse and laboratory experiments (Experiments 2, 3 and 4). Mixing the microgranular-based PH directly into the substrate prior to sowing resulted in a significant dose-dependent increase in shoot fresh and dry biomass, root dry weight, root to shoot ratio, leaf N content and chlorophyll content (Soil-Plant Analysis Development index) in both lettuce and tomato transplants up to a biostimulant rate of 2 g L−1. The positive effect of the microgranular-based PH on plant growth, leaf N and chlorophyll content in both the lettuce and tomato transplants was also observed in the second experiment. However, the PH-mediated enhancement of shoot fresh biomass was more pronounced when Trichoderma was combined with the liquid instead of the microgranule PH. In contrast, the microgranule containing PH and Trichoderma was more effective in increasing the plant root to shoot ratios than the combined application of liquid PH and Trichoderma. In the laboratory experiments, the application of PH to sandy soil enhanced the number of Trichoderma colonies and stimulated Trichoderma-induced respiration for up to two and six days for the liquid and microgranular PHs, respectively. These results demonstrate that mixing microgranules containing PH and Trichoderma in the substrate prior to sowing at a rate of 2 g L−1 is the best approach to enhance shoot and especially root growth of both tomato and lettuce plantlets, while also ensuring high N uptake and leaf chlorophyll content.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3