Antifungal and Phytotoxic Activities of Essential Oils: In Vitro Assays and Their Potential Use in Crop Protection

Author:

El-Alam Imad,Raveau RobinORCID,Fontaine Joël,Verdin Anthony,Laruelle Frédéric,Fourmentin SophieORCID,Chahine Ramez,Makhlouf Hassane,Lounès-Hadj Sahraoui AnissaORCID

Abstract

(1) Background: The use of natural products based on essential oils (EO) is nowadays arousing great interest as an alternative method to control plant pathogens and weeds. However, EO possess low bioavailability and are highly volatile, and their encapsulation in hydroxypropyl-ß-cyclodextrin (HP-β-CD) could be a means to enhance their stability and maintain their bioactivity. Thus, the current study aims at investigating, in the presence and the absence of HP-β-CD, the antifungal and phytotoxic activities of nine EO, distilled from plant species belonging to Alliaceae, Apiaceae, and Cupressaceae families, with considerations for their chemical composition. (2) Methods: EO antifungal activity was assessed by direct contact and volatility assays against Fusarium culmorum, a major phytopathogenic fungi, while phytotoxic effects were evaluated against lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), by seedling’s emergence and growth assays. (3) Results: These EO inhibit fungal growth in both direct contact and volatility assays, with half-maximal inhibitory concentrations (IC50) ranging from 0.01 to 4.2 g L−1, and from 0.08 up to 25.6 g L−1, respectively. Concerning phytotoxicity, these EO have shown great potential in inhibiting lettuce (IC50 ranging from 0.0008 up to 0.3 g L−1) and rye-grass (IC50 ranging from 0.01 to 0.8 g L−1) seedlings’ emergence and growth. However, the EO encapsulation in HP-β-CD has not shown a significant improvement in EO biological properties in our experimental conditions. (4) Conclusion: All tested EO present antifungal and phytotoxic activities, with diverse efficacy regarding their chemical composition, whilst no increase of their biological effects was observed with HP-β-CD.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3