Three-Year Survey of Fusarium Multi-Metabolites/Mycotoxins Contamination in Wheat Samples in Potentially Epidemic FHB Conditions

Author:

Spanic Valentina1ORCID,Maricevic Marko2,Ikic Ivica2,Sulyok Michael3ORCID,Sarcevic Hrvoje45

Affiliation:

1. Department for Breeding & Genetics of Small Cereal Crops, Agricultural Institute Osijek, 31000 Osijek, Croatia

2. Bc Institute for Breeding and Production of Field Crops, 10370 Dugo Selo, Croatia

3. Department of Agrobiotechnology (IFA‐Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, 3430 Tulln, Austria

4. Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia

5. Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), 10000 Zagreb, Croatia

Abstract

Fusarium head blight (FHB) is a fungal disease of cereals including wheat, which results in significant economic losses and reductions in grain quality. Additionally, the presence of Fusarium spp. results in productions of mycotoxins/metabolites, some of which are toxic in low concentrations. The liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was applied to 216 wheat samples from field conditions diseased with FHB. Data obtained show that out of 28 metabolites detected, deoxynivalenol (DON), deoxynivalenol-3-glucoside (D3G), enniatin B (ENN B), enniatin B1 (ENN B1), culmorin, 15-hydroxyculmorin, and aurofusarin were the most prevalent mycotoxins/metabolites over three years (2014–2016). In 2014–2016, 100, 100 and 96% of the samples were contaminated with zearalenone (ZEN). Of the masked mycotoxins, D3G occurred at a high incidence level of 100% in all three investigated years. Among emerging mycotoxins, moniliformin (MON), beauvericin (BEA) and enniatins (ENNs) showed high occurrences ranging from 27 and 100% during three investigated years. Co-occurrence of Fusarium mycotoxins/metabolites was high and almost all were highly correlated to each other but their possible synergistic, additive, or antagonistic effects of toxicity, should be taken into consideration. Our results demonstrated that modified and emerging mycotoxins/metabolites contributed substantially to the overall contamination of wheat grains. To avoid disparagement, it is necessary to analyse these forms in future mycotoxin monitoring programs and to set their maximum levels.

Funder

BC Institute

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3