Photosynthetic and Agronomic Traits of Winter Barley (Hordeum vulgare L.) Varieties

Author:

Csajbók József,Pepó PéterORCID,Kutasy Erika

Abstract

We tested six winter barley (Hordeum vulgare L.) cultivars in a small plot field experiment, measuring photosynthesis and other parameters three times during the growing season. Four genotypes—Andoria, Jakubus, Paradies and Zophia—are new, promising varieties with requirements of intensive technology, high yield potential and very good disease resistance. The two popular Hungarian varieties (KG Apavár and KG Puszta) are relatively old but they have good tolerance to extreme ecological conditions and outstanding resistance and winter hardiness. The aim of our research was to test the new varieties’ performance. Several recent studies found close connections among various photosynthetic parameters in barley, and we confirmed that in our research. There were significant differences between the varieties in the assimilation rate—the highest values were measured at the BBCH 47–49 stage (end of booting), except Jakubus and Zophia, where the highest values were at BBCH 73–75 (milk ripe). The cultivars’ response to irradiation change varied, especially at higher photosynthetic photon flux density (PPFD) levels. In April and May, the plants were in drought stress according to the intercellular CO2 level and the total conductance to carbon dioxide. The differences between the air and leaf temperature were also low, indicating water stress, but the assimilation rate was relatively high (9.07–14.09 µmol m−2 s−1).We found a close connection between normalized difference vegetation index (NDVI) values and grain protein content in each of the tested barley cultivars. The correlation was significant, at p = 0.01 level. The protein yield per hectare was determined rather by grain yield than protein content. The relationship between the NDVI values and grain yield was moderate, but NDVI values and protein content are in strong correlation.

Funder

European Social Fund

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3