Responses of Soybean Dry Matter Production, Phosphorus Accumulation, and Seed Yield to Sowing Time under Relay Intercropping with Maize

Author:

Ahmed Shoaib,Raza Muhammad,Zhou Tao,Hussain Sajad,Khalid Muhammad,Feng Lingyang,Wasaya Allah,Iqbal NasirORCID,Ahmed Aftab,Liu Weigou,Yang Wenyu

Abstract

Soybean production under maize–soybean relay-intercropping system (MSICS) is vulnerable to shading. A study was initiated to investigate the effects of three sowing-times: ST1, 90; ST2, 70; and ST3, 50 days of co-growth period and two phosphorus-rates: P0, 0; and P60, 60 kg P ha−1 on soybean under MSICS. Results revealed that ST3 significantly increased the photosynthetically active radiations, leaf area index, and photosynthetic rate by 72% and 58%, and 61% and 38%, and 6% and 8%, respectively, at full-flowering and full-pod stage of soybean than ST1. Treatment ST3, increased the total dry-matter (TDM) and the highest TDM was reached at full-seed (R6) stage. Similarly, ST3 considerably increased the dry-matter partitioning to pods and seeds, relative to ST1, soybean under ST3 at R6 had 35% and 30% higher pod and seed dry-matter, respectively. Moreover, ST3 exhibited the maximum seed-yield (mean 1829.5 kg ha−1) for both years of this study. Soybean under ST3 with P60 accumulated 38% higher P, and increased the P content in pods and seeds by 36% and 33%, respectively at R6 than ST1. These results imply that by selecting the appropriate sowing-time and phosphorus-rate for soybean, we can increase the TDM and seed-yield of soybean under MSICS.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3