Effect of Irrigation and Nitrogen Management on Potato Growth, Yield, and Water and Nitrogen Use Efficiencies

Author:

Shrestha Bhimsen1,Stringam Blair L.1,Darapuneni Murali K.2,Lombard Kevin A.3,Sanogo Soumaila4,Higgins Charles5,Djaman Koffi3ORCID

Affiliation:

1. Department of Plant and Environmental Sciences, New Mexico State University, 1780 E University Ave., Las Cruces, NM 88003, USA

2. Department of Plant and Environmental Sciences, New Mexico State University, Rex E. Kirksey Agricultural Science Center at Tucumcari, 6502 Quay Road Am.5, Tucumcari, NM 88401, USA

3. Department of Plant and Environmental Sciences, New Mexico State University, Agricultural Science Center at Farmington, Farmington, 300 Road 4063, Farmington, NM 87499, USA

4. Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, 1780 E University Ave., Las Cruces, NM 88003, USA

5. Higgins Farms Inc., 4220 N. Crescent Ave., Farmington, NM 87401, USA

Abstract

Irrigation and nitrogen management are crucial for sustainable potato (Solanum tuberosum L.) production. A field experiment was conducted during the 2022 and 2023 growing seasons at Farmington, New Mexico, to evaluate the performance of two chip potato varieties (Lamoka and Waneta) under three irrigation regimes (full irrigation (FI), 20% deficit irrigation (DI) and 40% DI) and seven nitrogen fertilizer rates (0, 60, 115, 170, 220, 280, and 340 kg N/ha). The treatment combinations of irrigation regimes, nitrogen rates, and varieties were arranged in a split–split plot design with three replications as main plot, sub-plot, and sub-sub plot, respectively. The two-year results showed that irrigation regimes had the most significant effect on plant growth, physiology, and tuber yield of the potato varieties. For both Lamoka and Waneta, the plant height and canopy cover were lower under 40% DI than under 20% DI and FI treatments. The SPAD meter values were higher under 40% DI, followed by 20% DI and FI treatments, whereas the stomatal conductance was higher under FI, followed by 20% DI and 40% DI during both growing seasons. Regardless of nitrogen rates and variety, a 20% water-saving irrigation strategy reduced the total tuber yield by 4.5% and 22.1% in the 2022 and 2023 growing seasons, respectively, while the 40% water-saving irrigation strategy reduced total tuber yield by 36.8% and 58.2% in the 2022 and 2023 growing seasons, respectively, as compared to full irrigation. Shifting from full irrigation to 20% DI could save 711.2 to 1036.3 m3/ha of irrigation water. For Lamoka, the highest total tuber yield was obtained with 60 kg N/ha under 20% DI and 220 kg N/ha under FI in 2022 and 2023, respectively. For Waneta, the highest total tuber yield was obtained with 115 kg N/ha under 20% DI and 170 kg N/ha under FI in 2022 and 2023, respectively. Maximum water use efficiency (WUE) was obtained at 60 kg N/ha with 20% DI for both Lamoka and Waneta in 2022, while maximum WUE was obtained at 220 kg N/ha under FI for Lamoka and at 170 kg N/ha for Waneta in the 2023 season. The maximum nitrogen use efficiency (NUE) was achieved with 60 kg N/ha under 20% DI for both varieties during both growing seasons. Thus, for sustainable irrigation and nitrogen management, the application of a 20% deficit irrigation strategy with a lower nitrogen rate (60 to 170 kg N/ha) could be the best option to improve WUE and NUE with minimal tuber yield reduction. Our study suggested that 40% deficit irrigation would not be beneficial as compared to both full irrigation and 20% water-saving irrigation.

Publisher

MDPI AG

Reference59 articles.

1. FAOSTAT (2023, December 04). Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL.

2. United States Department of Agriculture (USDA) (2023). Potatoes 2022 Summary.

3. He, Z., Larkin, R., and Honeycutt, W. (2012). Sustainable Potato Production: Global Case Studies, Springer.

4. Potatoes for sustainable global food security;Devaux;Potato Res.,2014

5. Campos, H., and Ortiz, O. (2020). The Potato Crop, Springer.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3