Optimizing the Water and Nitrogen Management Scheme to Enhance Potato Yield and Water–Nitrogen Use Efficiency

Author:

Ju Zhiqiang12,Li Dongrong12,Cui Yanqiang1,Sun Dongyuan1

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China

2. DAYU IRRIGATION GROUP Co., Ltd., Lanzhou 730050, China

Abstract

Water and nitrogen are the primary constraints on improving agricultural productivity. The aims of this study are to investigate the synergistic effects of water and nitrogen, optimize their combination schemes under mulched drip irrigation systems in the northwest region of China, and offer scientific insight into enhancing water and nitrogen use efficiency in potato cultivation. The traditional cultivar “Qing Shu 10” was chosen for the test material. A two-year field study on potato water–nitrogen interaction was conducted in the central Hexi Corridor, within Ganzhou District of Zhangye City, with three irrigation levels (W1 (336 mm), W2 (408 mm), and W3 (480 mm)) and three nitrogen application rates (N1 (44 kg ha−1), N2 (192 kg ha−1), and N3 (240 kg ha−1)) using a fully randomized combination design, resulting in nine treatments. This study examined the varying responses in potato yield and water–nitrogen use efficiency to different water–nitrogen combinations in the Hexi Corridor region, developed a mathematical regression model to predict the economic benefit of potatoes based on water–nitrogen interactions, and refined the application strategy. The results indicated that both the volume of irrigation water and the rate of nitrogen application significantly influenced potato yield and water–nitrogen utilization efficiency. A distinct interactive effect was observed between irrigation volume and nitrogen application rate. The reduced irrigation volume restricted nitrogen uptake, with an average increase of 31.87% in nitrogen fertilizer partial productivity and 31.54% in potato yield when moving from W1 to W2 over two years and only a 6.02% and 5.48% increase from W2 to W3, respectively. Similarly, reduced nitrogen application rates also hindered water uptake by potatoes, with increases of 9.05% in water use efficiency, 12.14% in irrigation water use efficiency, 12.12% in yield from N1 to N2, and only 1.98% and 1.69% increases in irrigation water use efficiency and yield from N2 to N3, while water use efficiency decreased by 1.17%. The highest yield values over the two-year period were observed in the N2W3 treatment, with 43,493.54 and 43,082.19 kg ha−1. The irrigation volume, nitrogen application rate, and potato economic benefit were well modeled by a quadratic regression, with an R2 of 0.996 for both predicted and actual economic benefit over two years, indicating a trend of initial increase followed by a decrease as water and nitrogen levels increased. Through simulation optimization and a thorough analysis of multiple indicators, the N2W3 treatment yielded an economic benefit exceeding 25,391.13 CNY ha−1 and demonstrated a high water–nitrogen utilization efficiency. This treatment not only enhances potato economic benefit but also minimizes agricultural resource inputs, establishing it as the optimal water and fertilizer management strategy for this study.

Funder

Gansu Agricultural University Doctoral Research Start-up Funding Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3