Characterization of a Soybean (Glycine max L. Merr.) Population for Germination and Seedling Root Traits under Water Stress

Author:

Kakati Jyoti PrasadORCID,Fallen Benjamin,Bridges William,Narayanan SruthiORCID

Abstract

Dry soil conditions at soybean planting results in poor stand establishment, which often necessitates replanting. We conducted a study to identify soybean genotypes that can maintain germination rates and possess better root morphology under water stress. We tested 41 Plant Introductions (PI) for germination and seedling root traits under controlled environmental conditions at five water potentials: 0.00, −0.27, −0.54, −0.82, and −1.09 MPa (no, low, mild, severe, and extreme water stress, respectively). The same genotypes were tested for emergence and seedling root traits under field conditions in South Carolina (2021 and 2022) and North Carolina (2022). Among the 41 genotypes evaluated, PI 398566 and PI 424605A maintained higher germination percentages (≥63%) under water stress. The same genotypes were ranked among the top 15 genotypes for root traits (total-root and fine-root (diameter between 0.25 and 0.50 mm) length, surface area, and/or volume) under water stress. Furthermore, they had relatively higher emergence percentages under field conditions (≥35% under dry soil conditions). The superior genotypes identified in this study (PI 398566 and PI 424605A) that had better germination and root morphology under water-stress and no-stress conditions and better emergence would be useful for developing varieties with drought tolerance during the emergence phase.

Funder

South Carolina Soybean Board

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference64 articles.

1. A Reference Guide to Important Soybean Facts and Figures. American Soybean Association http://soystats.com/

2. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions

3. Comparative conventional and phenomics approaches to assess symbiotic effectiveness of Bradyrhizobia strains in soybean (Glycine max L. Merrill) to drought

4. Soybean Production, Versatility, and Improvement;Shea,2020

5. Farming and Farm Income,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3