Effects of Post-Anthesis Drought and Irrigation on Grain Yield, Canopy Temperature and 13C Discrimination in Common Wheat, Spelt, and Einkorn

Author:

Kuresova GabrielaORCID,Haberle Jan,Svoboda Pavel,Wollnerova Jana,Moulik Michal,Chrpova Jana,Raimanova IvanaORCID

Abstract

Fluctuations in precipitation and higher evapotranspiration due to rising temperatures are reflected in reduced wheat yields, even in areas with a low historical incidence of drought. In this study, the effects of drought (S) and irrigation (IR) on spelt, einkorn wheat, and two common wheat cultivars were assessed in a field experiment in the years 2018–2021. Water availability was differentiated from the flowering stage using a mobile cover and drip irrigation. Grain yield, canopy temperature, and discrimination of 13C in grain (Δ 13C) were monitored. Drought reduced the average grain yield of common wheat to 5.24 t.ha−1, which was 67.00% of the rain-fed control (C) yield, and 62.09% of the irrigated wheat yield. For spelt and einkorn wheat, the average grain yield from stressed plants was 2.02 t.ha−1; this was 79.97% of the C-variant yield, and 70.82% of the IR-variant yield. Higher stand temperatures were an excellent indicator of water deficit in the stressed crops. The relationship between temperature and final grain yield in the monitored variants was always negative. In all years, discrimination of 13C in grain corresponded to water availability; in its effect on yields, the correlation was always positive. Between 2018 and 2020, spelt and einkorn exhibited lower Δ 13C in comparison with common wheat in all variants, suggesting a greater impact of differentiated water supply. The results of the experiment conclusively demonstrated systematic effects of drought after flowering upon yields and other studied characteristics.

Funder

Ministry of Agriculture of the Czech Republic

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3