An Object-Based Weighting Approach to Spatiotemporal Fusion of High Spatial Resolution Satellite Images for Small-Scale Cropland Monitoring

Author:

Park SoyeonORCID,Park No-WookORCID,Na Sang-il

Abstract

Continuous crop monitoring often requires a time-series set of satellite images. Since satellite images have a trade-off in spatial and temporal resolution, spatiotemporal image fusion (STIF) has been applied to construct time-series images at a consistent scale. With the increased availability of high spatial resolution images, it is necessary to develop a new STIF model that can effectively reflect the properties of high spatial resolution satellite images for small-scale crop field monitoring. This paper proposes an advanced STIF model using a single image pair, called high spatial resolution image fusion using object-based weighting (HIFOW), for blending high spatial resolution satellite images. The four-step weighted-function approach of HIFOW includes (1) temporal relationship modeling, (2) object extraction using image segmentation, (3) weighting based on object information, and (4) residual correction to quantify temporal variability between the base and prediction dates and also represent both spectral patterns at the prediction date and spatial details of fine-scale images. The specific procedures tailored for blending fine-scale images are the extraction of object-based change and structural information and their application to weight determination. The potential of HIFOW was evaluated from the experiments on agricultural sites using Sentinel-2 and RapidEye images. HIFOW was compared with three existing STIF models, including the spatial and temporal adaptive reflectance fusion model (STARFM), flexible spatiotemporal data fusion (FSDAF), and Fit-FC. Experimental results revealed that the HIFOW prediction could restore detailed spatial patterns within crop fields and clear crop boundaries with less spectral distortion, which was not represented in the prediction results of the other three models. Consequently, HIFOW achieved the best prediction performance in terms of accuracy and structural similarity for all the spectral bands. Other than the reflectance prediction, HIFOW also yielded superior prediction performance for blending normalized difference vegetation index images. These findings indicate that HIFOW could be a potential solution for constructing high spatial resolution time-series images in small-scale croplands.

Funder

Rural Development Administration

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3