Intelligent Detection of Lightweight “Yuluxiang” Pear in Non-Structural Environment Based on YOLO-GEW

Author:

Ren Rui12,Sun Haixia12,Zhang Shujuan12,Wang Ning3ORCID,Lu Xinyuan12,Jing Jianping12,Xin Mingming12,Cui Tianyu12

Affiliation:

1. College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China

2. Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu 030801, China

3. Department of Biosystems and Agricultural Engineering, Oklahoma State University, 111 Agricultural Hall, Stillwater, OK 74078, USA

Abstract

To detect quickly and accurately “Yuluxiang” pear fruits in non-structural environments, a lightweight YOLO-GEW detection model is proposed to address issues such as similar fruit color to leaves, fruit bagging, and complex environments. This model improves upon YOLOv8s by using GhostNet as its backbone for extracting features of the “Yuluxiang” pears. Additionally, an EMA attention mechanism was added before fusing each feature in the neck section to make the model focus more on the target information of “Yuluxiang” pear fruits, thereby improving target recognition ability and localization accuracy. Furthermore, the CIoU Loss was replaced with the WIoUv3 Loss as the loss function, which enhances the capability of bounding box fitting and improves model performance without increasing its size. Experimental results demonstrated that the enhanced YOLO-GEW achieves an F1 score of 84.47% and an AP of 88.83%, while only occupying 65.50% of the size of YOLOv8s. Compared to lightweight algorithms such as YOLOv8s, YOLOv7-Tiny, YOLOv6s, YOLOv5s, YOLOv4-Tiny, and YOLOv3-Tiny; there are improvements in AP by 2.32%, 1.51%, 2.95%, 2.06%, 2.92%, and 5.38% respectively. This improved model can efficiently detect “Yuluxiang” pears in non-structural environments in real-time and provides a theoretical basis for recognition systems used by picking robots.

Funder

Science and Technology Innovation Fund Project of Shanxi Agricultural University

Research and Innovation Projects for Graduate Students in Shanxi Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3