Abstract
Drought and heat stress have perceptibly become major maize (Zea mays L.) yield reducing factors in Sub-Saharan Africa. As such, the objectives of this study were to: (i) determine the type of gene action conditioning tolerance to combined drought and heat stress (CDHS), and (ii) identify inbred lines with good combining ability for yield and other morpho-agronomic traits under CDHS. Twenty-four single cross hybrids (SCHs) obtained from crossing 10 inbred lines in a 4 × 6 North Carolina Design II, and a drought-tolerant check, were evaluated under CDHS and optimum conditions in the field. The experiment was laid out in a 5 × 5 alpha lattice incomplete block design, replicated three times. Additive gene effects influenced all the traits under CDHS except grain yield, which was influenced by non-additive gene effects. A preponderance of additive genetic effects was observed for all traits recorded under optimum conditions. Inbred lines L30, L6, L5, L17 and L2 showed good combining ability for yield under CDHS, indicating that they could be good parental lines in hybridization programs. Based on the results, SCHs L2*30, L6*13 and L5*18 exhibited high specific combining ability (SCA) effects for yield under CDHS. These hybrids are recommended for further multi-locational evaluation to determine the stability of their performance.
Subject
Agronomy and Crop Science
Reference34 articles.
1. Quality Protein Maize;Prasanna;Curr. Sci.,2001
2. Evaluation of Quality Protein Maize (QPM) and Normal Maize for Growth Performance of Broiler Chicken in Nepal;Tiwari;GJSFR Agri. Vet.,2013
3. Physio-genetic behavior of maize seedlings at water deficit conditions
4. Quantitative Genetics in Maize Breeding;Hallauer,1988
5. General vs. Specific Combining Ability in Single Crosses of Corn
1
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献