Genetic analysis of tolerance to combined drought and heat stress in tropical maize

Author:

Elmyhun MelkamuORCID,Abate Ermias,Abate Alemu,Teklewold Adefris,Menkir Abebe

Abstract

Simultaneous occurrences of heat and drought stresses have a detrimental effect on growth, development and yield of maize. Heat and drought is expected to worsen maize yield losses under climate change. Selecting CDHS tolerant maize hybrids creates great opportunity for sustainable maize improvement in the tropics. The objective of current investigation was to dissect the genetic basis of CDHS tolerance in tropical maize and to determine performance of single cross hybrids under CDHS. Ninety six single-cross hybrids resulted from crossing 12 tassel blast tolerant and 12 tassel blast susceptible lines along with two Striga resistant commercial hybrids, a heat tolerant and a heat susceptible check hybrids were evaluated under FIRR, MDRTS and CDHS using 25x4 alpha lattice design with two replications. The results showed significant genetic variation for FIRR, MDRTS and CDHS tolerance among maize hybrids. The majority of single crosses that showed improved grain yield over their respective standard checks under MDRTS also exhibited improved grain yield over the same checks under CHDS, indicating development of CHDS tolerance hybrids. Significant and positive genotypic and phenotypic correlation of grain yield under MDRTS and CDHS implicated common genetic mechanisms controlling yield under MDRTS and CDHS. Stress tolerance indices YI, GMP, MP, HM and STI were identified as best selecting indices under both stresses. GCA variances were larger than SCA variances in each testing environment for most studied traits indicating the impotence of additive gene action than non-additive gene action to control these traits. Majority of stress indices and SCA effects demonstrated that hybrids HB18, HB41, HB91 and HB95 were high yielder under MDRTS and CDHS. Hybrids HB41, HB91 and HB95 and their parents’ scored minimum tassel blast. Parents 19 and 7 were well general combiner for grain yield and early maturity under MDRTS and CDHS indicting their valuable source of genes for hybridization. The current findings revealed that CDHS tolerance hybrids can reduce expected yield losses and maintain maize productivity in CDHS prone areas. Promising hybrids should be tested further under various drought and CHDS for commercialization.

Publisher

Public Library of Science (PLoS)

Reference51 articles.

1. Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments Climate Resilient Maize for Asia;B. M. Prasanna;Theor. Appl. Genet.,2021

2. Viewpoint: Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health;N. Poole;Food Policy,2021

3. FAO, “FAOstat Food and Agriculture organization of the united nations, Rome.,” 2021.

4. Factors that transformed maize productivity in Ethiopia;T. Abate;Food Sci.,2015

5. Characteristics of maize cultivars in Africa: How modern are they and how many do smallholder farmers grow?;A. Tsedeke;Agric. Food Secur.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3