The Effect of Bioclimatic Covariates on Ensemble Machine Learning Prediction of Total Soil Carbon in the Pannonian Biogeoregion

Author:

Radočaj Dorijan1ORCID,Jurišić Mladen1ORCID,Tadić Vjekoslav1

Affiliation:

1. Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia

Abstract

This study employed an ensemble machine learning approach to evaluate the effect of bioclimatic covariates on the prediction accuracy of soil total carbon (TC) in the Pannonian biogeoregion. The analysis involved two main segments: (1) evaluation of base environmental covariates, including surface reflectance, phenology, and derived covariates, compared to the addition of bioclimatic covariates; and (2) assessment of three individual machine learning methods, including random forest (RF), extreme gradient boosting (XGB), and support vector machine (SVM), as well as their ensemble for soil TC prediction. Among the evaluated machine learning methods, the ensemble approach resulted in the highest prediction accuracy overall, outperforming the individual models. The ensemble method with bioclimatic covariates achieved an R2 of 0.580 and an RMSE of 10.392, demonstrating its effectiveness in capturing complex relationships among environmental covariates. The results of this study suggest that the ensemble model consistently outperforms individual machine learning methods (RF, XGB, and SVM), and adding bioclimatic covariates improves the predictive performance of all methods. The study highlights the importance of integrating bioclimatic covariates when modeling environmental covariates and demonstrates the benefits of ensemble machine learning for the geospatial prediction of soil TC.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3