Influence of Thermal Pretreatment on Lignin Destabilization in Harvest Residues: An Ensemble Machine Learning Approach

Author:

Kovačić Đurđica1ORCID,Radočaj Dorijan1ORCID,Samac Danijela1,Jurišić Mladen1ORCID

Affiliation:

1. Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia

Abstract

The research on lignocellulose pretreatments is generally performed through experiments that require substantial resources, are often time-consuming and are not always environmentally friendly. Therefore, researchers are developing computational methods which can minimize experimental procedures and save money. In this research, three machine learning methods, including Random Forest (RF), Extreme Gradient Boosting (XGB) and Support Vector Machine (SVM), as well as their ensembles were evaluated to predict acid-insoluble detergent lignin (AIDL) content in lignocellulose biomass. Three different types of harvest residue (maize stover, soybean straw and sunflower stalk) were first pretreated in a laboratory oven with hot air under two different temperatures (121 and 175 °C) at different duration (30 and 90 min) with the aim of disintegration of the lignocellulosic structure, i.e., delignification. Based on the leave-one-out cross-validation, the XGB resulted in the highest accuracy for all individual harvest residues, achieving the coefficient of determination (R2) in the range of 0.756–0.980. The relative variable importances for all individual harvest residues strongly suggested the dominant impact of pretreatment temperature in comparison to its duration. These findings proved the effectiveness of machine learning prediction in the optimization of lignocellulose pretreatment, leading to a more efficient lignin destabilization approach.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Horticulture,Food Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3