Growing Environment and Heat Treatment Effects on Intra- and Interspecific Pollination in Chile Pepper (Capsicum spp.)

Author:

Lin Tsung Han,Lin Shih Wen,Wang Yen Wei,van Zonneveld Maarten,Barchenger Derek W.

Abstract

Heat tolerance is important for the sustainable production of many crops, including chile pepper. Tolerance to high temperature is complex and involves various component traits, with pollen viability being among the most important. in vitro pollen assays for heat tolerance have been widely used in chile pepper; however, associations between the pollen treatment and pollination have not been widely explored. The objectives of this study were to validate the utility of in vitro heat stress pollen characterization through in vivo pollination during summer and winter seasons and to evaluate the cross-compatibility among wild and domesticated species to initiate introgression population development. Seven entries of wild and domestic Capsicum species grown during the summer and winter seasons were used to evaluate pollination success rate. Pollen was either used directly or treated at 38 °C for four hours before making reciprocal self- and cross-pollination among all the entries. Significant associations between in vitro pollen treatment and pollination success rate during summer and winter seasons were identified. Heat treatment was a greater contributor to variability than the growing environment, which validates previous reports on the usefulness of studying pollen in vitro in selection for heat tolerance. Accessions of the wild progenitor C. annuum var glabriusculum, PBC 1969 and PBC 1970, were identified as a potential heat-tolerant source for use in breeding and future research. This work provides a basis for future research in exploring additional heat tolerance components as well as for the development of phenotyping assays for pollen or other floral traits.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference45 articles.

1. FAOSTAT Statistical Databasehttp://www.fao.org/faostat/en/#data/QC

2. The Capsicum Genome;Barchenger,2019

3. Growing Degree Days in North Carolina;Sanders,1980

4. Global warming and sexual plant reproduction

5. Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3