Identification and Molecular Characterization of a 16SrII-A Phytoplasma Associated with Cucumber Phyllody in China

Author:

Xi Youwei1ORCID,Du Mengdan1,Tang Yafei1,She Xiaoman1,Lan Guobing1,Yu Lin1,Ding Shanwen1,He Zifu1,Li Zhenggang1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

Abstract

Cucumber plants (Cucumis sativus) displaying symptoms of phyllody, sterility, and flower virescence were observed in fields located in the Dianbai district of Guangdong province, China. Total DNA was extracted from the symptomatic plants; this was followed by molecular detection using a set of universal phytoplasma primer pairs, R16mF2/mR1, P1/P7, and SecYF1(II)/SecYR1(II). This resulted in the PCR amplification of products corresponding to expected sizes of 1.4 kb, 1.8 kb and 1.7 kb, respectively. The 16S rDNA sequence obtained exhibited 100% similarity with the eggplant phyllody phytoplasma, the ‘Cleome rutidosperma’ witches’ broom phytoplasma, and the ‘Desmodium ovalifolium’ witches’ broom phytoplasma strain DeOWB, all of which belong to the 16SrII group. Phylogenetic analysis, based on the 16S rDNA gene and SecY gene sequences, confirmed the close affiliation of the detected phytoplasma isolate, tentatively designated as cucumber phyllody phytoplasma (CuPh) China isolate, with the 16SrII-A subgroup. Additionally, virtual restriction fragment length polymorphism (RFLP) analysis of the 16S rDNA sequence revealed a pattern that was identical to that of the 16SrII-A subgroup. This is the first report of cucumber phyllody phytoplasma in China.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guangzhou

Young Talent Support Project of Guangzhou Association for Science and Technology

Special Fund for Scientific Innovation Strategy—Construction of High-Level Academy of Agriculture Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3