A Systematic Review on the Improvement of Cd Stress Tolerance in Ramie Crop, Limitations and Future Prospective

Author:

Rasheed Adnan1ORCID,Jie Hongdong1,He Pengliang1,Lv Xueying1,Ali Basharat2,Ma Yushen1,Xing Hucheng1,Almari Saad3,Elnour Rehab O.4ORCID,Hassan Muhammad Umair5,Gillani Syed Faheem Anjum6,Jie Yucheng1

Affiliation:

1. College of Agronomy, Hunan Agricultural University, Changsha 410128, China

2. Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 62400, Pakistan

3. Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia

4. Biology Department, Faculty of Sciences and Arts, King Khalid University, Abha 61413, Saudi Arabia

5. Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China

6. Gansu Provincial Key Lab of Arid Land Crop Science, Lanzhou 730070, China

Abstract

Cadmium (Cd) is a non-essential, highly phytotoxic metal and damages ramie plant growth and development even at low concentrations. Ramie is one of the most significant crops in China, with excellent fiber quality and immense industrial importance. Planting Cd-tolerant ramie cultivars can prevent yield loss on contaminated soil. Previously, significant efforts have been made to develop Cd tolerance in ramie. However, the Cd tolerance mechanism is still not fully understood; hence, breeding industrial crops is critical to tackling the ongoing challenges. Cd tolerance is a complex genetic mechanism requiring high-level molecular studies to clarify the genes network. Genetic studies have identified several Cd-tolerant genes in ramie, which led to the development of several ramie cultivars suitable to grow on toxic soils; however, due to the continuous rise in Cd toxicity, potent molecular tools are critical in modern-day breeding programs. Genetic engineering, and transcriptome analysis have been used to develop abiotic stress tolerance in ramie, but QTL mapping and clustered regularly interspaced short palindromic repeats (CRISPR) are rarely studied. However, studies are still limited in addressing this issue. This review critically elaborated on using QTL mapping, transcriptomes, transcription factors, CRISPR/Cas9, and genetic engineering to enhance Cd tolerance in ramie. These genes/QTL should be transferred or edited into sensitive cultivars using genetic engineering or CRISPR/Cas9. CRISPR/Cas9 is highly recommended because it provides targeted gene editing in ramie, its use is limited and can address the research gaps, and it would revolutionize the field of agriculture. Limitations, gaps, and future potential are briefly discussed. This review paper presents new clues to help future researchers comprehensively understand Cd tolerance in ramie and develop tolerant cultivars for industrial purposes.

Funder

National Natural Science Foundation of China

China National Key R&D Program

Foundation for the Construction of Innovative Hunan

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3