Abscisic-Acid-Regulated Responses to Alleviate Cadmium Toxicity in Plants

Author:

Zhao Yuquan12,Wang Jiaqi13,Huang Wei24,Zhang Dawei13,Wu Jinfeng13,Li Bao24,Li Mei24,Liu Lili13,Yan Mingli234

Affiliation:

1. School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China

2. Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China

3. Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China

4. Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China

Abstract

High levels of cadmium (Cd) in soil can cause crop yield reduction or death. Cadmium accumulation in crops affects human and animal health as it passes through the food chain. Therefore, a strategy is needed to enhance the tolerance of crops to this heavy metal or reduce its accumulation in crops. Abscisic acid (ABA) plays an active role in plants’ response to abiotic stress. The application of exogenous ABA can reduce Cd accumulation in shoots of some plants and enhance the tolerance of plants to Cd; therefore, ABA may have good application prospects. In this paper, we reviewed the synthesis and decomposition of ABA, ABA-mediated signal transduction, and ABA-mediated regulation of Cd-responsive genes in plants. We also introduced physiological mechanism underlying Cd tolerance because of ABA. Specifically, ABA affects metal ion uptake and transport by influencing transpiration and antioxidant systems, as well as by affecting the expression of metal transporter and metal chelator protein genes. This study may provide a reference for further research on the physiological mechanism of heavy metal tolerance in plants.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3