Water Evaporation Reduction Using Sunlight Splitting Technology

Author:

Ali Abaker Omer AltyebORCID,Li Ming,Liu Wen,Liu Xinliang,Zheng JiananORCID,Zhang Fangxin,Zhang Xinyu,Osman Hamid Mohammed Samia,Liu Yang,Ingenhoff JanORCID,Kumar RohitashwORCID

Abstract

The imbalance between precipitation and water evaporation has caused crop yield reduction, drought, and desertification. Furthermore, most parts of the world are short of water, including China. We proposed a low-cost polymer multilayer film to reduce water evaporation by only passing through several sunlight wavelengths necessary for photosynthesis. A series of experiments were conducted to characterize the influence of partial sunlight on the reduction of water evaporation. Evaporation containers and evaporation pans were placed in open-air (CK), under a glass shed (GS), and under a glass-shed covered with multilayer films (GMF). Our results showed a significant reduction in water evaporation under GMF. Cumulative soil surface evaporation of CK, GS and GMF over 45 days was 80.53 mm, 68.12 mm, and 56.79 mm, respectively. Under GMF, cumulative water evaporation from soil and pan surfaces decreased by 29% and 26%. The slope (β1≠0) of simple linear regression showed a significant relationship between evaporation time and cumulative water evaporation (p = 0.000 < α = 0.05 shown in the ANOVA table). The correlation coefficient was more than 0.91 in all treatments, suggesting a strong positive linear relationship. This study may contribute to future drought resistance and agrivoltaic sustainability development.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference43 articles.

1. Effect of Mulch on Soil Physical Properties and N, P, K Concentration in Maize (Zea mays) Shoots under Two Tillage Systems;Awan;Int. J. Agric. Biol.,2009

2. Soil Water Conservation by Course Textured Volcanic Rock Mulch;Khorsandi;Soc. Appl. Sci.,2011

3. Irrigation management under water scarcity

4. Irrigation Technology and Water Conservation: A Review of the Theory and Evidence

5. Possible pathways and tensions in the food and water nexus

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3