An Overview of Smart Irrigation Management for Improving Water Productivity under Climate Change in Drylands

Author:

Ahmed Zeeshan12ORCID,Gui Dongwei123ORCID,Murtaza Ghulam4ORCID,Yunfei Liu123,Ali Sikandar123

Affiliation:

1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

2. Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Cele 848300, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Global drylands, covering about 41% of Earth’s surface and inhabited by 38% of the world’s population, are facing the stark challenges of water scarcity, low water productivity, and food insecurity. This paper highlights the major constraints to agricultural productivity, traditional irrigation scheduling methods, and associated challenges, efforts, and progress to enhance water use efficiency (WUE), conserve water, and guarantee food security by overviewing different smart irrigation approaches. Widely used traditional irrigation scheduling methods (based on weather, plant, and soil moisture conditions) usually lack important information needed for precise irrigation, which leads to over- or under-irrigation of fields. On the other hand, by using several factors, including soil and climate variation, soil properties, plant responses to water deficits, and changes in weather factors, smart irrigation can drive better irrigation decisions that can help save water and increase yields. Various smart irrigation approaches, such as artificial intelligence and deep learning (artificial neural network, fuzzy logic, expert system, hybrid intelligent system, and deep learning), model predictive irrigation systems, variable rate irrigation (VRI) technology, and unmanned aerial vehicles (UAVs) could ensure high water use efficiency in water-scarce regions. These smart irrigation technologies can improve water management and accelerate the progress in achieving multiple Sustainable Development Goals (SDGs), where no one gets left behind.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3