The Combined Analysis of Transcriptome and Metabolome Provides Insights into Purple Leaves in Eruca vesicaria subsp. sativa

Author:

Xi Dandan,Li Xiaofeng,Zhang ChangweiORCID,Gao Lu,Zhu Yuying,Wei Shiwei,Li YingORCID,Jiang Mingmin,Zhu Hongfang,Zhang Zhaohui

Abstract

Background: Arugula is an essential oil crop of cruciferous species worldwide and serves as a salad vegetable. Purple plant leaves provide nutrients benefiting human beings and are mainly attributed to high anthocyanins. In this study, we collected a purple arugula cultivar with purple leaves and a green arugula with green leaves. The genetic bases and mechanisms underlying purple leaf formation in arugula remain unclear. Therefore, we conducted integrative metabolomics and transcriptomics of two arugula cultivars with different leaf colors. Methods: To study the underlying mechanisms, transcriptomic and metabolomic analyses were carried out. Results: Metabolomic analysis revealed that 84 of 747 metabolites were significantly differentially expressed, comprising 30 depleted and 49 enriched metabolites. Further analysis showed that cyanidin is the main components responsible for the purple color. A total of 144,790 unigenes were obtained by transcriptomic analysis, with 13,204 unigenes differentially expressed, comprising 8120 downregulated and 5084 upregulated unigenes. Seven structural genes, PAL, C4H, 4CL, CHS, CCoAOMT, LDOX, and UFGT, were identified as candidate genes associated with anthocyanin accumulation through combined analysis of transcriptome and metabolome. Conclusions: Collectively, the differences in the expression levels of PAL, C4H, 4CL, CHS, CCoAOMT, LDOX, and UFGT might be responsible for purple leaf coloration, providing important data for the discovery of candidate genes and molecular bases controlling the purple leaves in arugula.

Funder

Natural Science Foundation of Jiangsu Province

Agriculture research system of shanghai

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3