Optimizing Training Population Size and Content to Improve Prediction Accuracy of FHB-Related Traits in Wheat

Author:

Adeyemo Emmanuel,Bajgain PrabinORCID,Conley Emily,Sallam Ahmad,Anderson JamesORCID

Abstract

Genomic selection combines phenotypic and molecular marker data from a training population to predict the genotypic values of untested lines. It can improve breeding efficiency as large pools of untested lines can be evaluated for selection. Training population (TP) composition is one of the most important factors affecting the accuracy of genomic prediction. The University of Minnesota wheat breeding program implements genomic selection at the F5 stage for Fusarium head blight (FHB) resistance. This study used field data for FHB resistance in wheat (Triticum aestivum L.) to investigate the use of small-size TPs designed with and without stratified sampling for three FHB traits in three different F5 populations (TP17, TP18, and TP19). We also compared the accuracies of these two TP design methods with the accuracy obtained from a large size TP. Lastly, we evaluated the impact on trait predictions when the parents of F5 lines were included in the TP. We found that the small size TP selected randomly, without stratification, had the lowest predictive ability across the three F5 populations and across the three traits. This trend was statistically significant (p = 0.05) for all three traits in TP17 and two traits in TP18. Designing a small-size TP by stratified sampling led to a higher accuracy than a large-size TP in most traits across TP18 and TP19; this is because stratified sampling allowed the selection of a small set of closely related lines. We also observed that the addition of parental lines to the TP and evaluating the TP in two replications led to an increase in predictive abilities in most cases.

Funder

Agricultural Research Service

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference50 articles.

1. Food and Agriculture Organization of the United Nationshttp://www.fao.org/resources/infographics/infographics-details/en/c/240943/

2. Impacts of FHB on the North American agriculture community—The power of one disease to catapult change;McMullen,2003

3. Economic impacts of Fusarium head blight in wheat and barley: 1993–2001;Nganje;Agribus. Appl. Econ.,2004

4. Fusarium Mycotoxins, Chemistry, Genetics, and Biology;Desjardins,2006

5. Meta-Analysis of the Effects of Triazole-Based Fungicides on Wheat Yield and Test Weight as Influenced by Fusarium Head Blight Intensity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3