An Air Convection Wall with a Hollow Structure in Chinese Solar Greenhouses: Thermal Performance and Effects on Microclimate

Author:

Zhuang YunfeiORCID,Zhao Shumei,Cheng Jieyu,Wang Pingzhi,Lu NaORCID,Ma Chengwei,Xing Wenxin,Zheng Kexin

Abstract

A Chinese solar greenhouse (CSG) is a horticultural facility that uses solar energy to promote a growth environment for crops and provides high-efficiency thermal storage performance to meet the demand of vegetables’ growth in winter. Besides being an important load-bearing structure in CSGs, the north wall is a heat sink, storing during the day in order to act as a heat source during the night. At times, the night temperature is lower than the minimum growth temperature requirement of vegetables, and the additional heating is needed. Therefore, optimizing the heat storage and release performance of the north wall in a CSG is an important approach for improving growth environment and reducing consumption of fossil fuel. This study proposes a heat storage north wall with a hollow layer on the basis of air convection, aiming to optimize the utilization of solar energy in CSGs. By the air convection effects, the hollow layer collects and stores surplus solar energy in the air during the day and transfers it to the cultivation space for heating at night. Additionally, field tests were conducted to compare the natural and forced convection strategies via airflow and heat transfer efficiency. The final effect on the indoor temperature ensured that the lowest temperatures at night were above 5 °C under both the natural and forced convection strategies during the winter in the Beijing suburbs where the average minimum temperature is below −10.8 °C during the experimental period. The hollow structure improves the utilization efficiency of solar energy in CSGs and ensures winter production efficiency in northern China.

Funder

The National Key R&D Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3