Early Detection of Excess Nitrogen Consumption in Cucumber Plants Using Hyperspectral Imaging Based on Hybrid Neural Networks and the Imperialist Competitive Algorithm

Author:

Sabzi SajadORCID,Pourdarbani RaziehORCID,Rohban Mohammad HosseinORCID,García-Mateos GinésORCID,Paliwal JitendraORCID,Molina-Martínez José MiguelORCID

Abstract

To achieve healthy and optimal yields of agricultural products, the principles of nutrition must be observed and appropriate fertilizers must be applied. Nutritional deficiencies or overabundance reduce the quality and yield of the products. Thus, their early detection prevents physiological disorders and associated diseases. Most research efforts have focused on spectroscopy, which extracts only spectral data from a single point of the product. The present study aims to detect early excess nitrogen in cucumber plants by using a new hyperspectral imaging technique based on a hybrid of artificial neural networks and the imperialist competitive algorithm (ANN-ICA), which can provide spectral and spatial information on the leaves at the same time. First, cucumber seeds were planted in 18 pots. The same inputs were applied to all the pots until the plants grew; after that, 30% excess nitrogen was applied to nine pots with irrigation water, while it remained constant in the other nine pots. Each day, six leaves were collected from each pot, and their images were captured using a hyperspectral camera (in the range of 400–1100 nm). The wavelengths of 715, 783 and 821 nm were determined as the most effective for early detection of excess nitrogen using a hybrid of artificial neural networks and the artificial bee colony algorithm (ANN-ABC). The parameter of days of treatment was classified using ANN-ICA. The performance of the classifier was evaluated using different criteria, namely recall, accuracy, specificity, precision and the F-measure. The results indicate that the differences between different days were statistically significant. This means that the hyperspectral imaging technique was able to detect plants with excess nitrogen in the near-infrared range (NIR), with a correct classification rate of 96.11%.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3