Comparison of 2D and 3D convolutional neural networks in hyperspectral image analysis of fruits applied to orange bruise detection

Author:

Pourdarbani Raziyeh1ORCID,Sabzi Sajad2ORCID,Zohrabi Reihaneh2ORCID,García‐Mateos Ginés3ORCID,Fernandez‐Beltran Ruben3ORCID,Molina‐Martínez José Miguel4ORCID,Rohban Mohammad H.2ORCID

Affiliation:

1. Department of Biosystems Engineering University of Mohaghegh Ardabili Ardabil Iran

2. Department of Computer Engineering Sharif University of Technology Tehran Iran

3. Computer Science and Systems Department University of Murcia Murcia Spain

4. Food Engineering and Agricultural Equipment Department Technical University of Cartagena Cartagena Spain

Abstract

AbstractRecent advances in hyperspectral imaging (HSI) have demonstrated its ability to detect defects in fruit that may not be visible in RGB images. HSIs can be considered 3D images containing two spatial dimensions and one spectral dimension. Therefore, the first question that arises is how to process this type of information, either using 2D or 3D models. In this study, HSI in the 550–900 nm spectral range was used to detect bruising in oranges. Sixty samples of Thompson oranges were subjected to a mechanical bruising process, and HSIs were taken at different time intervals: before bruising, and 8 and 16 h after bruising. The samples were then classified using two convolutional neural network (CNN) models, a shallow 7‐layer network (CNN‐7) and a deep 18‐layer network (CNN‐18). In addition, two different input processing approaches are used: using 2D information from each band, and using the full 3D data from each HSI. The 3D models were the most accurate, with 94% correct classification for 3D‐CNN‐18, compared to 90% for 3D‐CNN‐7, and less than 83% for the 2D models. Our study suggests that 3D HSI may be a more effective technique for detecting fruit bruising, allowing the development of a fast, accurate, and nondestructive method for fruit sorting.Practical ApplicationOrange bruises can reduce the market value of food, which is why the food processing industry needs to carry out quality inspections. An effective way to perform this inspection is by using hyperspectral images that can be processed with 2D or 3D models, either with deep or shallow neural networks. The results of the comparison performed in this work can be useful for the development of more accurate and efficient bruise detection methods for fruit inspection.

Funder

Fundación Séneca

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3