Identification of Armyworm-Infected Leaves in Corn by Image Processing and Deep Learning

Author:

Saadati Nadia1,Pourdarbani Razieh1,Sabzi Sajad2,Hernandez-Hernandez José Luis3

Affiliation:

1. University of Mohaghegh Ardabili, Faculty of Agriculture Department of Biosystem Engineering Ardabil , Iran

2. Sharif University of Technology, Faculty of Computer Engineering Department of Computer Engineering Tehran , Iran

3. National Technological Institute of Mexico Campus Chilpancingo, Chilpancingo Guerrero , Mexico

Abstract

Abstract Corn is rich in fibre, vitamins, and minerals, and it is a nutritious source of carbohydrates. The area under corn cultivation is very large because, in addition to providing food for humans and animals, it is also used for raw materials for industrial products. Corn cultivation is exposed to the damage of various pests such as armyworm. A regional monitoring of pests is intended to actively track the population of this pest in a specific geography; one of the ways of monitoring is using the image processing technology. Therefore, the aim of this research was to identify healthy and armyworm-infected leaves using image processing and deep neural network in the form of 4 structures named AlexNet, DenseNet, EfficientNet, and GoogleNet. A total of 4500 images, including healthy and infected leaves, were collected. Next, models were trained by train data. Then, test data were evaluated using the evaluation criteria such as accuracy, precision, and F score. Results indicated all the classifiers obtained the precision above 98%, but the EfficientNet-based classifier was more successful in classification with the precision of 100%, accuracy of 99.70%, and F-score of 99.68%.

Publisher

Walter de Gruyter GmbH

Reference26 articles.

1. ABDULLAH, A. – ULLAH, M. I. – RAZA, A. B. M. – ARSHAD, M. – AFZAL, M. 2019. Host plant selection affects biological parameters in armyworm, Spodoptera litura (Lepidoptera: Noctuidae). In Pakistan Journal of Zoology, vol. 51, no. 6, pp. 2117–2123. DOI: http://dx.doi.org/10.17582/journal.pjz/2019.51.6.2117.2123

2. BRÉVAULT, T. – NDIAYE, A. – BADIANE, D. – BAL, A. B. – SEMBENE, M. – SILVIE, P. – HARAN, J. 2018. First records of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in Senegal. In Entomologia Generalis, vol. 37, no. 2, pp. 129–142. DOI: https://doi.org/10.1127/entomologia/2018/0553

3. DAHHAM, G. A. – Al-IRHAYIM, M. N. – Al-MISTAWI, K. E. – KHESSRO, M. K. 2023. Performance evaluation of artificial neural network modelling to a ploughing unit in various soil conditions. In Acta Technologica Agriculturae, vol. 26, no. 4, pp. 94–200. DOI: https://doi.org/10.2478/ata-2023-0026

4. DAY, R. – ABRAHAMS, P. – BATEMAN, M. – BEALE, T. – CLOTTEY, V. – COCK, M. – COLMENAREZ, Y. – CORNIANI, N. – EARLY, R. – GODWIN, J. – GOMEZ, J. – MORENO, P. G. – MURPHY, S. T. – OPPONG-MENSAH, B. – PHIRI, N. – PRATT, C. – SILVESTRI, S. – WITT, A. 2017. Fall armyworm: Impacts and implications for Africa. In Outlooks on Pest Management, vol. 28, no. 5, pp. 196–201. DOI: https://doi.org/10.1564/v28_oct_02

5. DE GROOTE, H. – KIMENJU, S. C. – MUNYUA, B. – PALMAS, S. – KASSIE, M. – BRUCE, A. 2020. Spread and impact of fall armyworm (Spodoptera frugiperda JE Smith) in maize production areas of Kenya. In Agriculture, Ecosystems & Environment, vol. 292, article no. 106804. DOI: https://doi.org/10.1016/j.agee.2019.106804

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3