Metabolites, Nutritional Quality and Antioxidant Activity of Red Radish Roots Affected by Gamma Rays

Author:

El-Beltagi Hossam S.ORCID,Maraei Rabab W.ORCID,Shalaby Tarek A.ORCID,Aly Amina A.ORCID

Abstract

Radish is a root vegetable of the Brassicaceae family that is grown and eaten all over the world. It is often consumed raw as a crisp salad vegetable with a strong flavor. Therefore, this study aimed to clarify the stimulating effect of different γ-rays dose levels (0.0, 10, 20, 40, and 80 Gy) on the quality properties of radish, in addition to its nutritional elements, as well as some of the metabolites found in the red radish roots. The results indicated that the irradiated seeds showed a high germination rate of ≥96% for dose levels of ≤20 Gray (Gy). In addition, the use of gamma rays had a stimulating effect on the vegetative growth, particularly at the doses of 10 and 40 Gy, which provided the largest values of plant height (32.65 cm) and leaf number/plant (8.08), respectively, whereas all the irradiation treatments led to a rise in the length and width of leaves. However, the maximum root characteristics (length, diameter, size, and weight) were confirmed at the dose of 20 Gy (17.51 cm, 5.45 cm, 85.25 cm3 as well as 78.12 g, respectively). It was also noted that the content of plant pigments was significantly higher at a dose of 20 Gy. Additionally, there was an increase in the content of vitamin C using gamma rays, and the highest content (19.62 mg/100 g FW) was at the dose of 20 Gy. The use of γ-radiation caused an increase in some metabolite contents, such as anthocyanin, phenols, and flavonoids, which resulted in an enhancement in the antioxidant activity, achieving the greatest value at the dose of 40 Gy. Exposure of red radish seeds to gamma irradiation before cultivation improved the root contents of the elements (N, K, S, P, Ca, and Mg). The results indicated an increase in the content of organic acids (oxalic, succinic, and glutaric acids) using the radiation dose of 20 Gy, except for malic acid, which had the highest value at a dose of 80 Gy. Similarly, the amino acid pool was significantly increased by irradiation, and the levels of amino acids, which act as originators of the glucosinolate (GLS) phenylalanine, tyrosine and methionine), increased after exposure to gamma radiation, especially at doses of 40 and 80 Gy. Therefore, the red radish roots produced from seeds exposed to gamma rays were of high quality and nutritional value compared to those obtained from un-irradiated seeds. For this reason, gamma-rays are one of the tools that are utilized to improve the growth and quality of crops, especially in low doses.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3