Reducing Deep Percolation Losses Using a Geotextile Layer at Different Soil Depths and Irrigation Levels for Lettuce Crop (Lactuca sativa L. var. capitata) (Limor)

Author:

Abdelbaset Marwa M.1ORCID,Dewedar Osama M.1ORCID,Youssef Ebtessam A.1,Molina-Martinez José Miguel2ORCID,El-Shafie Ahmed F.1ORCID

Affiliation:

1. Water Relations and Field Irrigation Department, National Research Centre, Cairo 12622, Egypt

2. Food Engineering and Agricultural Equipment Department, Technical University of Cartagena, 30203 Cartagena, Spain

Abstract

Due to rising food demand and the limitation of water resources, achieving water security is essential. The lettuce crop is affected when grown under limited water supplies as it produces small heads, especially during the late growing stage. For this reason, it is important to maximize water use efficiency and crop productivity. Two successive experiments were conducted during 2021 and 2022 to reduce losses via deep percolation using a geotextile layer at different soil depths under different irrigation levels of the lettuce crop (Lactuca sativa L. var. capitata). This study aims to reduce water losses due to deep percolation and improve crop growth and yield parameters for iceberg lettuce under subsurface drip irrigation in sandy loam soil conditions. In order to achieve these aims, different amounts of irrigation (100, 80, and 60% of crop evapotranspiration “ETc”) and a geotextile layer at different soil depths (20, 30, and 40 cm from the soil surface) were used. The results revealed that the use of a geotextile layer with 20 and 30 cm depths significantly improved irrigation application efficiency and noticeably increased soil water content in the root zone. The observed results during both seasons showed that geotextile layers at 20, 30, and 40 cm depths under irrigation of 100% ETc significantly increased vegetative growth characteristics (plant height, head diameter, head circumference, head volume, plant fresh weight, and leaf area) and crop productivity compared to the control (without geotextile). In particular, the geotextile layer at a 30 cm depth under irrigation of 100% of ETc was the most statistically effective treatment in this study, with yield values of 69.3 and 67.5 t ha−1 in the two seasons, respectively. However, the treatments of geotextile layers at 20 and 30 cm depths under irrigation of 80% of ETc also recorded statistically effective results for crop growth parameters and yield in this study. In general, geotextiles can be used at different depths as an irrigation management practice to reduce deep percolation in the field.

Funder

Science, Technology & Innovation Funding Authority in Egypt,

Egyptian–Spanish Joint Technological Co-operation Program, International Cooperation Grants

the project “An Innovative Technology for Improving Irrigation Water Use in the Mediterranean Region Using Geotextile Material”

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3