Sensitivity analysis of estimated evapotranspiration using soil moisture content, energy balance model of SEBAL algorithm

Author:

Dai Yunzhong12345,Chen Kuan-yu6

Affiliation:

1. a Intelligent Manufacturing Institute, Yibin Vocational and Technical College, Yibin, Sichuan 644003, China

2. b Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Jiangsu 212013, Zhenjiang, China

3. c Intelligent Terminal Key Laboratory of Sichuan Province, Yibin 644005, Sichuan, China

4. d Sichuan Dawn precision Technology Co., Ltd., Meishan 620460, Sichuan, China

5. e School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China

6. f Yulin Normal University, School of Political Science and law, Yulin 537000, Guangxi, China

Abstract

Abstract Evapotranspiration is the main factor of plant growth, which can be estimated using different methods. Accurate estimation of evaporation and transpiration helps in planning to meet the actual needs of the plant. In general, daily evapotranspiration depends on temperature, climate, soil moisture, plant, growth period, root length, and the texture of the root zone porous media. In this study, the moisture balance of the soil surface is simulated daily and the components of deep percolation, evaporation, irrigation, and transpiration are calculated. The obtained results have been compared with the output of the surface energy balance algorithm for land (SEBAL) algorithm to determine the energy balance on the earth's surface and to estimate evapotranspiration. Normalized objective function (NOF), Nash–Sutcliffe efficiency index, and mean absolute error were incorporated into the problem for evaluating the predicted values. The energy balance of the soil surface and the moisture balance of the root zone each have a different process in estimating the actual evaporation and transpiration, but the correlation between them was acceptable. The interval between the calculated values can be used as input data to determine the irrigation requirement.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3