Study on Water and Salt Transport Characteristics of Sunflowers under Different Irrigation Amounts in the Yellow River Irrigation Area

Author:

Tong Changfu12,He Rui12,Wang Jun1,Zheng Hexiang1

Affiliation:

1. Institute of Pastoral Water Resources Science, Ministry of Water Resources, Hohhot 010020, China

2. College of Water Resources and Civil Construction Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

Abstract

The control of irrigation volume is of significant importance in arid regions of northwest China. Particularly, it has a crucial impact on the salinization of shallow groundwater areas. In 2022 and 2023, field experiments were conducted to test three distinct under-membrane irrigation treatments. These treatments were assigned water quotas of HW (27 mm), MW (22.5 mm), and LW (18 mm). The HYDRUS-2D model was integrated with a field experiment to accurately simulate the dynamic fluctuations of soil water and salt in the sunflower root zone. The model’s performance was assessed and verified using real-field data from 2022 and 2023, and the simulation results closely matched the measured values. This research also used stable hydroxide isotopes to assess the water supply from various soil layers at different time intervals in sunflower plants. The results indicated that the three different levels of irrigation applied under the membrane had a significant impact on soil water content. Specifically, there was a significant difference in soil water content at a depth of 0–40 cm (p < 0.05), while there was little effect on the water content at a depth of 40–60 cm (p > 0.05). After irrigation, the average salt content in the top 0–20 cm of soil decreased by 7.0% compared to the medium and low irrigation levels, and by 10.8% compared to the medium irrigation level. Additionally, the medium irrigation level resulted in a 10.8% decrease in salt content compared to the low irrigation level, and a 4.1% decrease compared to the medium irrigation level. During the same period, the soil salinity levels at depths of 0–20 cm, 20–40 cm, 40–60 cm, and 60–100 cm in the area outside the membrane were measured to be 2.7~4.8 g·kg−1, 2.8~4.0 g·kg−1, 2.7~3.4 g·kg−1, and 1.7~2.6 g·kg−1, respectively. These levels decreased by 13.1~55.5%, 0.7~42.8%, −0.4~16.2%, and −72.7~7.5%, respectively. Following irrigation, the HW treatment mostly absorbed water in the 0–40 cm soil layer, while the MW and LW treatments absorbed water in both the 0–40 cm and 60–80 cm soil levels. The results indicated that the most optimal drip irrigation method beneath the membrane in this location was achieved when the amount of water applied was between 25–30 mm. This method demonstrated a combination of water conservation, high crop yield, and effective salt suppression.

Funder

Research on key technologies of drip irrigation for water conservation and efficiency and surface irrigation for salt suppression in Yellow River water

Publisher

MDPI AG

Reference55 articles.

1. The Agricultural Water Footprint of Al-Qadisiyah Governorate, Southern Iraq;Wedaa;IOP Conf. Ser. Earth Environ. Sci.,2022

2. Spatial and temporal optimal allocation of distributed multiple water sources in irrigation areas;Liu;J. Agric. Eng.,2022

3. Optimization and sensitivity analysis of border irrigation scheme in Hetao Irrigation District;Fan;J. Agric. Mach.,2021

4. Sun, K., Zhang, X.W., Nie, J., Zou, J.N., and Zhong, X.Y. (2023). Evaluation of water resources utilization performance in Chinese provinces and analysis of spatial differentiation and driving factors. Water Resour. Conserv., 39.

5. Simulation of water and salt transport in the Kaidu River Irrigation District using the modified SWAT-Salt;Jiang;Agric. Water Manag.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3