Simulation of Maize Growth Under the Applications of Brackish Water in Northwest China

Author:

Tong Changfu1,He Rui1,Wang Jun1,Zheng Hexiang1

Affiliation:

1. Institute of Water Resources in Pastoral Areas, Ministry of Water Resources, Huhhot 010020, China

Abstract

The objective of this study is to assess the suitability of the AquaCrop model for growing maize using brackish water irrigation in Northwest China. Additionally, this study aims to examine how maize utilizes water in various soil layers when irrigated with varying water qualities. The AquaCrop model was calibrated and verified using experimental data from the years 2022 and 2023 in this research. (1) The findings indicated that the AquaCrop model effectively simulated the canopy cover, biomass, and yield of maize when irrigated with brackish water. The validation year’s R2, MAPE, and RMSE values for canopy cover, biomass, and yield of maize were 0.95, 5.36%, and 4.77%, respectively. For biomass, the R2, MAPE, and RMSE values were 0.91, 16.61%, and 2.12 t·hm−2, respectively. For yield, the R2, MAPE, and RMSE values were 0.84, 3.62%, and 0.42 t·hm−2, respectively. (2) Irrigation with water of high mineral content, measured at 1.6 ds/m, as well as with fresh water over the whole reproductive period, resulted in an increased reliance on groundwater for maize cultivation. There was no notable disparity in the usage of various soil layers between the irrigation with alternating freshwater and brackish water. (3) The AquaCrop model simulated the effects of seven different irrigation water quality treatments. It was shown that using water with mineralization levels of 0.5 and 0.8 ds/m resulted in decreased freshwater use without causing a substantial decrease in maize yield and biomass.

Funder

Inner Mongolia Autonomous Region United Fund

Ordos City Science and Technology Major Special Project

Research on key technologies of drip irrigation for water conservation and efficiency and surface irrigation for salt suppression in Yellow River water

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3