Nitrous Oxide Emission and Grain Yield in Chinese Winter Wheat–Summer Maize Rotation: A Meta-Analysis

Author:

Yao Chengcheng,Wu Xiongwei,Bai He,Gu JiangxinORCID

Abstract

A systematic understanding of nitrous oxide (N2O) emission and grain yield in winter wheat–summer maize rotation, one of the most important cereal cropping systems in China, is still lacking. The primary aim of this study was to quantify the N2O emissions and grain yield, as well as responses to mitigation strategies, in this intensively managed agroecosystem. We conducted a pairwise meta-analysis by compiling a comprehensive dataset of annual N2O emissions (n = 530) and grain yields (n = 352) from peer−reviewed publications. The N2O emissions increased with nitrogen (N) fertilizer input rates following a linear model (r2 = 0.295, p < 0.001), giving a specific emission coefficient and background emission of 0.71% and 0.5 kg N ha−1 yr−1, respectively. The grain yields responded to the N input rates following a linear-plateau model (r2 = 0.478, p < 0.001), giving an optimal N input rate and maximum grain yield of 405 kg N ha−1 yr−1 and 15.5 t ha−1 yr−1, respectively. The meta-analyses revealed that reducing N fertilizers (approximately 50% of the full N input), water-saving irrigation, reduced or no tillage, and applying enhanced efficiency fertilizers significantly decreased N2O emissions (range: −45% to −9%) and increased or did not impact grain yields (range: −1% to 3%). We recommend that reducing agricultural inputs (i.e., N fertilizers, irrigation, and tillage) is a feasible N2O mitigation strategy in the intensively managed winter wheat–summer maize rotation that can be employed without additional environmental risks.

Funder

Natural Science Foundation of Shaanxi Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3