Spring Wheat–Summer Maize Annual Crop System Grain Yield and Nitrogen Utilization Response to Nitrogen Application Rate in the Thermal–Resource–Limited Region of the North China Plain

Author:

Liu Meng,Ma Zhiqi,Liang Qian,Zhang Yao,Yang Yong’an,Hou Haipeng,Wu Xidong,Ge Junzhu

Abstract

Spring wheat–summer maize (SWSM) annual crop systems were formed to satisfy the maize grain mechanized harvest thermal requirement in the thermal–resource–limited region of the North China Plain. However, the nitrogen (N) application rate effect on SWSM annual yield formation, N accumulation and utilization were barely evaluated. Two–year field experiments were conducted to evaluate the effects of the N application rate on the annual yield of SWSM, observe N accumulation and utilization, and identify the optimized N application. The experiments were conducted under 5 N levels of 0 (N0), 180 (N180), 240 (N240), 300 (N300), and 360 (N360) kg ha−1. The results showed that spring wheat, summer maize and annual cereal yield under the N240 and N480 treatments obtained the highest grain yield (GY) of 5038, 1282 and 16,320 kg ha−1, respectively, and the optimal N application rate was estimated using a linear–plateau model to be 231–307, 222–337 and 463–571 kg ha−1 with maximum GY of 4654–5317, 11,727–12,003 and 16,349–16,658 kg ha−1, respectively. With the increase in the N application rate, the dry matter accumulation (DM) were significantly increased by 16.9–173.5% for spring wheat and 11.1≈–76.8% for summer maize, respectively; and the annual cereal DM was 15.1–179.7% greater than that with N0 treatment, respectively. Spring wheat, summer maize and the annual cereal total N accumulation (TN) under N360 and N720 treatments were significantly increased by 5.4–19.1%, 16.6–32.3% and 11.5–26.2%, respectively, compared to the other treatments; however, N use efficiency for biomass and grain production (NUEbms and NUEg) were decreased significantly by 10.9–13.6% and 8.9–20.7%, 6.8–13.8% and 12.2–15.6%, and 5.5–11.7% and 10.0–16.0%, respectively. Meanwhile, the N partial factor productivity (PFPN), N agronomy use efficiency (ANUE), N recovery efficiency (NRE) and N uptake efficiency (NEupk) under the N240 treatment for spring wheat and summer maize obtained high levels of 20.99 and 47.01 kg−1, 9.27 and 16.35 kg−1, 32.53% and 32.44%, and 0.85 and 0.72 kg−1, respectively. Correlation analysis showed that the N application rate, TN and NEupk played significantly positive roles on GY, spring wheat spilke grain number, summer maize ear grain number and 1000–grain weight, DM LAImax and SPADmax, while NUEbms, NUEg, PFPN and ANUE always played negative effects. These results demonstrate that spring wheat, summer maize and annual cereal obtained the highest GY being 4654–5317, 11,727–12,003 and 16,349–16,658 kg ha−1 with the optimal N application rate 231–307, 222–337 and 463–571 kg ha−1, respectively, which provide N application guidance to farmer for spring wheat–summer maize crop systems to achieve annual mechanical harvesting in the thermal–resource–limited region of the North China Plain.

Funder

National Natural Science Foundation of China

Key National Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3