Effects of Different Micro-Irrigation Methods on Water Use and the Economic Benefits of an Apple–Soybean Intercropping System

Author:

Dai Houshuai1,Wang Ruoshui2,Chen Li2,Wang Lisha2,Xiong Chang2,Wang Xin2,Zhang Meng2

Affiliation:

1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

2. Forest Ecosystem Studies, National Observation and Research Station, Jixian 042200, China

Abstract

Intercropping systems reduce ineffective evaporation between trees but also intensify interspecific competition and reduce productivity. To improve the water-use efficiency and the economic benefits of an intercropping system on the Loess Plateau, China, where rainfall is limited and evaporation intense, an apple–soybean intercropping system with micro-irrigation water control was adopted to analyze the soil water, root density, water-use efficiency, yield, and economic benefits of intercropping under different micro-irrigation methods. Subsurface seepage irrigation, bubbler irrigation, and drip irrigation under mulching were used with irrigation upper limit levels of three maximum irrigation levels [60% (W1), 75% (W2), and 90% (W3) of field capacity (FC)]. Rainwater harvesting from ridges and furrows (GL) without irrigation was the control. Bubbler irrigation increased the soil water content, optimized the vertical soil water distribution, and promoted root growth. Except for the control treatment (GL), the other micro-irrigation treatments increased with the irrigation amount, but the water-use efficiency decreased. Drip irrigation under mulch combined with W2 (75% Fc) irrigation could obtain the maximum intercropping yield, which was increased by 71.1% compared with the GL treatment. Drip irrigation under a mulch combined with W2 produced the maximum intercropping yield; the economic benefits were higher under drip irrigation with mulching combined with W1; and all three micro-irrigation methods combined with W2 improved the economic benefits by 52.1–115.5% compared to GL. Drip irrigation under mulching or bubbler irrigation combined with W2 should be used when there are sufficient water resources, but drip irrigation under a mulch combined with W1 when there is a water shortage.

Funder

National Key Research and Development Program of China

National Natural Science Fund

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic literature review on adoption and impact of micro-irrigation;Journal of Water and Climate Change;2024-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3