Below-Ground Interspecific Competition of Apple (Malus pumila M.)–Soybean (Glycine max L. Merr.) Intercropping Systems Based on Niche Overlap on the Loess Plateau of China

Author:

Sun Yubo,Bi Huaxing,Xu HuasenORCID,Duan Hangqi,Peng Ruidong,Wang Jingjing

Abstract

To provide a scientific basis and technical support for agroforestry management practices, such as interrow configuration and soil water and fertilizer management, a stratified excavation method was performed both to explore the fine-root spatial distribution and niche differentiation and to quantify the below-ground interspecific competition status of 3-, 5-, and 7-year-old apple (Malus pumila M.)–soybean (Glycine max L. Merr.) intercropping systems and monocropping systems. The fine roots of older trees occupied a larger soil space and had both a greater fine-root biomass density (FRMD) and a greater ability to reduce the FRMD of soybean, but this ability decreased with the distance from the apple tree row. Similarly, the FRMD of apple trees was also adversely affected by soybean plants, but this effect gradually increased with a decrease in tree age or with the distance from the tree row. Compared with that of the 3- and 5-year-old monocropped apple trees, the FRMD of the 3- and 5-year-old intercropped apple trees increased in the 40–100 cm and 60–100 cm soil layers, respectively. However, compared with that of the 7-year-old apple and soybean monocropping systems, the FRMD of the 7-year-old intercropped apple trees and soybean plants decreased in each soil layer. Compared with that of the corresponding monocropped systems, the fine-root vertical barycenter (FRVB) of the intercropped apple trees displaced deeper soil and that of the intercropped soybean plants displaced shallower soil. Furthermore, the FRVB of both intercropped apple trees and intercropped soybean plants displaced shallower soil with increasing tree age. Intense below-ground interspecific competition in the 3-, 5-, and 7-year-old apple–soybean intercropping systems occurred in the 0–40 cm soil layer at distances of 0.5–0.9, 0.5–1.3, and 0.5–1.7 m from the apple tree row, respectively.

Funder

National Natural Science Foundation of China

Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3