Mechanisms of Plant Natural Immunity and the Role of Selected Oxylipins as Molecular Mediators in Plant Protection

Author:

Barbaś Piotr,Skiba DominikaORCID,Pszczółkowski Piotr,Sawicka BarbaraORCID

Abstract

Weed resistance to herbicides should be minimized, as this can lead to serious limitations in the food security for people around the world. The aim of the research was to summarize the latest research on the reactions of plants to pesticides, including herbicides, in order to assess the possibility of using jasmonates and brassinosteroids to stimulate the natural, induced systemic immunity of plants, as well as outline the possibility of the interaction of oxylipins with ethylene, salicylates and other compounds. Multiple types of resistance correspond to developed mechanisms of resistance to more than one herbicide, and this resistance has been induced by selection processes. Activation of the mechanisms of systemic immunity depends on the reception of extracellular signals, and their transduction between individual cells of the plant organism. Jasmonic acid (JA), as well as its methyl ester (MeJA), ethylene (ET), salicylic acid (SA) and methyl salicylate (MeSA), are key plant growth regulators that play a fundamental role in this process. JA and ET activate the mechanisms of induced systemic immunity (ISR), while SA determines the acquired systemic immunity (SAR). JA, MeJA and OPDA belong to the family of oxylipins, which are derivatives of linolenic acid (CLA), and are a group of active signaling molecules that are involved in the regulation of many physiological processes, including those that are related to herbicide resistance. Understanding the signaling mechanism in oxylipins, and mainly brassicosteroids (BRs) and jasmonates (Jas), would allow a better understanding of how immune responses are triggered in plants.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on the Discovery of Novel Natural Herbicide Safeners;Journal of Agricultural and Food Chemistry;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3