Research on Instance Segmentation Algorithm of Greenhouse Sweet Pepper Detection Based on Improved Mask RCNN

Author:

Cong Peichao,Li Shanda,Zhou Jiachao,Lv Kunfeng,Feng Hao

Abstract

The fruit quality and yield of sweet peppers can be effectively improved by accurately and efficiently controlling the growth conditions and taking timely corresponding measures to manage the planting process dynamically. The use of deep-learning-based image recognition technology to segment sweet pepper instances accurately is an important means of achieving the above goals. However, the accuracy of the existing instance segmentation algorithms is seriously affected by complex scenes such as changes in ambient light and shade, similarity between the pepper color and background, overlap, and leaf occlusion. Therefore, this paper proposes an instance segmentation algorithm that integrates the Swin Transformer attention mechanism into the backbone network of a Mask region-based convolutional neural network (Mask RCNN) to enhance the feature extraction ability of the algorithm. In addition, UNet3+ is used to improve the mask head and segmentation quality of the mask. The experimental results show that the proposed algorithm can effectively segment different categories of sweet peppers under conditions of extreme light, sweet pepper overlap, and leaf occlusion. The detection AP, AR, segmentation AP, and F1 score were 98.1%, 99.4%, 94.8%, and 98.8%, respectively. The average FPS value was 5, which can be satisfied with the requirement of dynamic monitoring of the growth status of sweet peppers. These findings provide important theoretical support for the intelligent management of greenhouse crops.

Funder

Central Government Guides Local Science and Technology Development Foundation Projects

Guangxi Key Research and Development Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3