Coupling Process-Based Models and Machine Learning Algorithms for Predicting Yield and Evapotranspiration of Maize in Arid Environments

Author:

Attia AhmedORCID,Govind Ajit,Qureshi Asad SarwarORCID,Feike Til,Rizk Mosa SayedORCID,Shabana Mahmoud M. A.,Kheir Ahmed M.S.ORCID

Abstract

Crop yield prediction is critical for investigating the yield gap and potential adaptations to environmental and management factors in arid regions. Crop models (CMs) are powerful tools for predicting yield and water use, but they still have some limitations and uncertainties; therefore, combining them with machine learning algorithms (MLs) could improve predictions and reduce uncertainty. To that end, the DSSAT-CERES-maize model was calibrated in one location and validated in others across Egypt with varying agro-climatic zones. Following that, the dynamic model (CERES-Maize) was used for long-term simulation (1990–2020) of maize grain yield (GY) and evapotranspiration (ET) under a wide range of management and environmental factors. Detailed outputs from three growing seasons of field experiments in Egypt, as well as CERES-maize outputs, were used to train and test six machine learning algorithms (linear regression, ridge regression, lasso regression, K-nearest neighbors, random forest, and XGBoost), resulting in more than 1.5 million simulated yield and evapotranspiration scenarios. Seven warming years (i.e., 1991, 1998, 2002, 2005, 2010, 2013, and 2020) were chosen from a 31-year dataset to test MLs, while the remaining 23 years were used to train the models. The Ensemble model (super learner) and XGBoost outperform other models in predicting GY and ET for maize, as evidenced by R2 values greater than 0.82 and RRMSE less than 9%. The broad range of management practices, when averaged across all locations and 31 years of simulation, not only reduced the hazard impact of environmental factors but also increased GY and reduced ET. Moving beyond prediction and interpreting the outputs from Lasso and XGBoost, and using global and local SHAP values, we found that the most important features for predicting GY and ET are maximum temperatures, minimum temperature, available water content, soil organic carbon, irrigation, cultivars, soil texture, solar radiation, and planting date. Determining the most important features is critical for assisting farmers and agronomists in prioritizing such features over other factors in order to increase yield and resource efficiency values. The combination of CMs and ML algorithms is a powerful tool for predicting yield and water use in arid regions, which are particularly vulnerable to climate change and water scarcity.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3