Calibration of Soil Moisture Sensors (ECH2O-5TE) in Hot and Saline Soils with New Empirical Equation

Author:

Louki Ibrahim I.ORCID,Al-Omran Abdulrasoul M.ORCID

Abstract

The use of soil moisture sensors is a practice applied to improve irrigation water management. ECH2O-5TE sensors are increasingly being used to estimate the volumetric water content (VWC). In view of the importance of the efficient use of these devices, six main factors affecting the accuracy of sensor measurements were studied: soil moisture levels, soil salinity, temperature, organic matter, soil texture, and bulk density. The study showed that the electrical conductivity of the soil and the temperature independently affect the measurements, while the influence of other factors interferes with that of salinity. This study found that the sensor measurements of the VWC were closest to the actual VWC at the soil ECe and temperatures of 2.42 dS m−1 and 25 °C, with root-mean-square errors (RMSE) of 0.003 and 0.004 m3 m−3. Otherwise, the measured VWC values of these sensor readouts significantly overestimated the actual VWC, with an increasing soil ECe and/or producing temperatures higher than the stated values, and vice versa. Given the importance of these sensors for obtaining accurate measurements for water management, a simplified empirical equation was derived using the data collected from a wide range of measurements to correct the influences of electrical conductivity and temperature on the measurement accuracy of the sensors, while considering the influence of the soil’s texture. Thus, the following equation was proposed: ϴva = θvsaECe2+bECe+c+dT2+eT+f−1. The results concerning the measurement of different VWC levels via these sensors and the proposed L&O correction equation were compared with the corresponding actual VWC values determined by gravimetric methods. It was found that this empirical equation reduced the differences in the RMSE between the sensor readings for the VWC and the actual VWC from 0.072 and 0.252 to 0.030 and 0.030 m3 m−3 for 1 and 5 dS m−1, respectively, with respect to the EC’s influence at 25 °C and reduced the RMSE from 0.053 and 0.098 to 0.007 and 0.011 at 3 and 50 °C, respectively, regarding the effect of the temperature at EC 2.42 dS m−1 at different levels of the actual VWC values.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3