Field-grown lettuce production optimized through precision irrigation water management using soil moisture-based capacitance sensors and biodegradable soil mulching

Author:

Helmy Haytham S.,Abuarab Mohamed E.,Abdeldaym Emad A.,Abdelaziz Suzy M.,Abdelbaset Marwa M.,Dewedar Osama M.,Molina-Martinez José M.,El-Shafie Ahmed F.,Mokhtar Ali

Abstract

AbstractScientists, environmentalists, and farmers are currently in pursuit of sustainable agricultural practices that can effectively ensure global food security while simultaneously mitigating environmental degradation. A field experiment was conducted to elucidate the impact of low-cost capacitance soil moisture-based sensors on lettuce (Lactuca sativa L.) irrigation water conservation, agro-physiological aspects, and nutritional characteristics. The experiment also involved the use of five different types of soil mulching films: white geotextile (WGup), green geotextile (GGup), black plastic (BPup), white geotextile for both above and below ground (WGup-down), green geotextile for both above and below ground (GGup-down), in addition to un-mulched soil (control). The findings demonstrated that the application of WGup, BPup, WGup&down, and GGup&down resulted in a significant improvement in irrigation water conservation, with WGup exhibiting the highest savings at 41.86%, while the control group exhibited the least amount of water savings at 19.87%. Moreover, the highest productivity levels were observed in plants mulched with GGup&down, reaching 47,944.68 kg ha−1, whereas the lowest productivity was recorded in plants mulched with green geotextile GGup at 22,377.89 kg ha−1. In terms of irrigation water productivity (IWP), the order of effectiveness was BPup > GGup-down > WGup > WGup-down > GGup > Control, with BPup achieving the highest IWP at 60.19 kg m−3 and the control treatment reporting the lowest at 27.80 kg m−3. The percentage of the irrigation water applied for crop evapotranspiration (Irc) showed that the control treatment saved the least amount of irrigation water, saving only 19.87%, while the best treatment was WGup, achieved the highest percentage of irrigation water savings at 41.86%. Additionally, mulched plants exhibited higher levels of nutrients (N, P, Ca, Mg, Fe, Mn, and Zn), ascorbic acid (AsA), and total phenol content (TPC), while showing lower nitrate content in the leaves compared to non-mulched plants. Overall, the utilization of soil moisture-based capacitance sensors and biodegradable mulching films has proven to be highly effective and low cost by 16.633 US$ year−1 to enhance irrigation water productivity, growth performance, nutritional quality, and overall productivity of lettuce crops, thereby contributing to the sustainability of lettuce production in arid regions.

Funder

"Science, Technology & Innovation Funding Authority in Egypt,

Cairo University

Publisher

Springer Science and Business Media LLC

Reference113 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3